Changes

m
no edit summary
Line 128: Line 128:     
[[Image:Inro-to-data-analysis-with-R-for-Forensic-Scientists.jpg|150px|Introduction to data analysis with R for forensic scientists]]
 
[[Image:Inro-to-data-analysis-with-R-for-Forensic-Scientists.jpg|150px|Introduction to data analysis with R for forensic scientists]]
<h3 style="text-decoration:none;">Introduction to data analysis with R for forensic scientists (Vol. 21)</h3>
+
<h3 style="text-decoration:none;">Introduction à l'analyse des données avec R pour les scientifiques de la police scientifique (Vol. 21)</h3>
 
<p class="author">James Michael Curran</p>
 
<p class="author">James Michael Curran</p>
<p>Statistical methods provide a logical, coherent framework in which data from experimental science can be analyzed. However, many researchers lack the statistical skills or resources that would allow them to explore their data to its full potential. Introduction to Data Analysis with R for Forensic Sciences minimizes theory and mathematics and focuses on the application and practice of statistics to provide researchers with the dexterity necessary to systematically analyze data discovered from the fruits of their research. Using traditional techniques and employing examples and tutorials with real data collected from experiments, this book presents the following critical information necessary for researchers: A refresher on basic statistics and an introduction to R Considerations and techniques for the visual display of data through graphics; An overview of statistical hypothesis tests and the reasoning behind them; A comprehensive guide to the use of the linear model, the foundation of most statistics encountered; An introduction to extensions to the linear model for commonly encountered scenarios.</p>
+
<p>(En anglais - titre original : <strong>Introduction to data analysis with R for forensic scientists (Vol. 21)</strong>) Les méthodes statistiques fournissent un cadre logique et cohérent dans lequel les données issues de la science expérimentale peuvent être analysées. Cependant, de nombreux chercheurs ne disposent pas des compétences ou des ressources statistiques qui leur permettraient d'explorer leurs données à leur plein potentiel. Introduction à l'analyse des données avec R pour les scientifiques de la police scientifique minimise la théorie et les mathématiques et se concentre sur l'application et la pratique des statistiques afin de fournir aux chercheurs la dextérité nécessaire pour analyser systématiquement les données découvertes à partir des fruits de leurs recherches. En utilisant des techniques traditionnelles et en s'appuyant sur des exemples et des tutoriels avec des données réelles recueillies lors d'expériences, ce livre présente les informations essentielles suivantes nécessaires aux chercheurs : Une remise à niveau sur les statistiques de base et une introduction à R. Des considérations et des techniques pour l'affichage visuel des données par le biais de graphiques ; Une vue d'ensemble des tests d'hypothèses statistiques et le raisonnement qui les sous-tend ; Un guide complet de l'utilisation du modèle linéaire, le fondement de la plupart des statistiques rencontrées ; Une introduction aux extensions du modèle linéaire pour les scénarios couramment rencontrés.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<br>
 
<br>
    
[[Image:Systems-immunology.jpg|150px|Systems immunology: an introduction to modeling methods for scientists]]
 
[[Image:Systems-immunology.jpg|150px|Systems immunology: an introduction to modeling methods for scientists]]
<h3 style="text-decoration:none;">Systems immunology: an introduction to modeling methods for scientists</h3>
+
<h3 style="text-decoration:none;">Immunologie des systèmes : une introduction aux méthodes de modélisation pour les scientifiques</h3>
<p class="author">Jayajit Das and Ciriyam Jayaprakash</p>
+
<p class="author">Jayajit Das et Ciriyam Jayaprakash</p>
<p>This book provides a complete overview of computational immunology, from basic concepts to mathematical modeling at the single molecule, cellular, organism, and population levels. It showcases modern mechanistic models and their use in making predictions, designing experiments, and elucidating underlying biochemical processes. It begins with an introduction to data analysis, approximations, and assumptions used in model building. Core chapters address models and methods for studying immune responses, with fundamental concepts clearly defined. Readers from immunology, quantitative biology, and applied physics will benefit from the following: Fundamental principles of computational immunology and modern quantitative methods for studying immune response at the single molecule, cellular, organism, and population levels. An overview of basic concepts in modeling and data analysis. Coverage of topics where mechanistic modeling has contributed substantially to current understanding. Discussion of genetic diversity of the immune system, cell signaling in the immune system, immune response at the cell population scale, and ecology of host-pathogen interactions.</p>
+
<p>(En anglais - titre original : <strong>Systems immunology: an introduction to modeling methods for scientists</strong>) Ce livre offre une vue d'ensemble complète de l'immunologie computationnelle, depuis les concepts de base jusqu'à la modélisation mathématique au niveau de la molécule unique, de la cellule, de l'organisme et de la population. Il présente les modèles mécanistes modernes et leur utilisation pour faire des prédictions, concevoir des expériences et élucider les processus biochimiques sous-jacents. Il commence par une introduction à l'analyse des données, aux approximations et aux hypothèses utilisées dans la construction des modèles. Les chapitres principaux traitent des modèles et des méthodes d'étude des réponses immunitaires, les concepts fondamentaux étant clairement définis. Les lecteurs issus de l'immunologie, de la biologie quantitative et de la physique appliquée bénéficieront des éléments suivants : Les principes fondamentaux de l'immunologie computationnelle et les méthodes quantitatives modernes pour étudier la réponse immunitaire au niveau de la molécule unique, de la cellule, de l'organisme et de la population. Un aperçu des concepts de base de la modélisation et de l'analyse des données. Couverture de sujets pour lesquels la modélisation mécaniste a contribué de manière substantielle à la compréhension actuelle. Discussion sur la diversité génétique du système immunitaire, la signalisation cellulaire dans le système immunitaire, la réponse immunitaire à l'échelle de la population cellulaire et l'écologie des interactions hôte-pathogène.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<br>
 
<br>
   −
[[Image:Data-Feminism-cover.jpg|150px|Data Feminism, by  Catherine D'Ignazio and Lauren F. Klein]]
+
[[Image:Data-Feminism-cover.jpg|150px|Data Feminism]]
<h3 style="text-decoration:none;">Data Feminism: A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism.</h3>
+
<h3 style="text-decoration:none;">Le féminisme des données : Une nouvelle façon de penser la science des données et l'éthique des données qui est informée par les idées du féminisme intersectionne</h3>
 
<p class="author">Catherine D'Ignazio and Lauren F Klein</p>
 
<p class="author">Catherine D'Ignazio and Lauren F Klein</p>
<p>Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In <i>Data Feminism</i>, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought.
+
<p>(En anglais - titre original : <strong>Data Feminism: A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism</strong>) Aujourd'hui, la science des données est une forme de pouvoir. Elle a été utilisée pour dénoncer l'injustice, améliorer les résultats en matière de santé et renverser des gouvernements. Mais elle a également été utilisée pour discriminer, policer et surveiller. Ce potentiel de bien, d'une part, et de mal, d'autre part, fait qu'il est essentiel de s'interroger : La science des données par qui ? La science des données pour qui ? La science des données dans l'intérêt de qui ? Les récits autour du big data et de la science des données sont très majoritairement blancs, masculins et techno-héroïques. Dans <i>Data Feminism</i>, Catherine D'Ignazio et Lauren Klein présentent une nouvelle façon de penser la science des données et l'éthique des données - une qui est informée par la pensée féministe intersectionnelle. [https://mitpress.mit.edu/books/data-feminism <i>Data Feminism</i>] offre des stratégies pour les scientifiques des données qui cherchent à apprendre comment le féminisme peut les aider à œuvrer pour la justice, et pour les féministes qui veulent concentrer leurs efforts sur le domaine croissant de la science des données. Mais le féminisme des données va bien au-delà du genre. Il s'agit du pouvoir, de qui en a et de qui n'en a pas, et de la manière dont ces différences de pouvoir peuvent être remises en question et modifiées.</p>
<p>[https://mitpress.mit.edu/books/data-feminism <i>Data Feminism</i>] offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.</p>
   
<p class="recco">Recommandé par le Bureau du DPI du Canada, Secrétariat du Conseil du Trésor du Canada, un partenaire de la Communauté des données du GC.</p>
 
<p class="recco">Recommandé par le Bureau du DPI du Canada, Secrétariat du Conseil du Trésor du Canada, un partenaire de la Communauté des données du GC.</p>
 
<br>
 
<br>
Line 158: Line 157:     
[[Image:Computer-age-statistical-inference.jpg|150px|Computer age statistical inference: Algorithms, evidence, and data science]]
 
[[Image:Computer-age-statistical-inference.jpg|150px|Computer age statistical inference: Algorithms, evidence, and data science]]
<h3 style="text-decoration:none;">Computer age statistical inference: Algorithms, evidence, and data science</h3>
+
<h3 style="text-decoration:none;">Inférence statistique à l'ère de l'informatique : Algorithmes, preuves et science des données</h3>
 
<p class="author">Bradley Efron et Trevor Hastie</p>
 
<p class="author">Bradley Efron et Trevor Hastie</p>
<p>The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.</p>
+
<p>(En anglais - titre original : <strong>Computer age statistical inference: Algorithms, evidence, and data science</strong>) Le vingt-et-unième siècle a vu une expansion époustouflante de la méthodologie statistique, tant en termes de portée que d'influence. Les termes &laquo; Big data &raquo; , &laquo; science des données &raquo; et &laquo; apprentissage automatique &raquo; sont devenus des termes familiers dans l'actualité, car les méthodes statistiques sont appliquées aux énormes ensembles de données de la science et du commerce modernes. Comment en sommes-nous arrivés là ? Et où allons-nous ? Ce livre nous emmène dans un voyage exaltant à travers la révolution de l'analyse des données qui a suivi l'introduction du calcul électronique dans les années 1950. En commençant par les théories inférentielles classiques - bayésiennes, fréquentistes, fisheriennes - les différents chapitres abordent une série de sujets influents : l'analyse de survie, la régression logistique, Bayes empirique, le jackknife et le bootstrap, les forêts aléatoires, les réseaux neuronaux, la chaîne de Markov Monte Carlo, l'inférence après sélection de modèle, et des dizaines d'autres. L'approche résolument moderne intègre la méthodologie et les algorithmes à l'inférence statistique. Le livre se termine par des spéculations sur l'orientation future des statistiques et de la science des données.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<br>
 
<br>
2,600

edits