Changes

Jump to navigation Jump to search
no edit summary
Line 5: Line 5:  
Afin d’appuyer ces objectifs, le Bureau de l’intendant principal des données élabore un cadre d’éthique des données qui fournira des conseils sur le traitement éthique des données et l’utilisation responsable de l’intelligence artificielle (IA). Les documents d’orientation sur l’utilisation responsable de l’IA portent sur six grands thèmes identifiés comme étant pertinents pour les projets du MPO utilisant l’IA. Ces thèmes sont : la protection des renseignements personnels et la sécurité, la transparence, la responsabilisation, la méthodologie et la qualité des données, l’équité et l’explicabilité. Si un grand nombre de ces thèmes chevauchent fortement le domaine de l’éthique des données, le thème de l’équité couvre de nombreuses préoccupations éthiques propres à l’IA en raison de la nature des répercussions que les préjugés peuvent avoir sur les modèles d’IA.
 
Afin d’appuyer ces objectifs, le Bureau de l’intendant principal des données élabore un cadre d’éthique des données qui fournira des conseils sur le traitement éthique des données et l’utilisation responsable de l’intelligence artificielle (IA). Les documents d’orientation sur l’utilisation responsable de l’IA portent sur six grands thèmes identifiés comme étant pertinents pour les projets du MPO utilisant l’IA. Ces thèmes sont : la protection des renseignements personnels et la sécurité, la transparence, la responsabilisation, la méthodologie et la qualité des données, l’équité et l’explicabilité. Si un grand nombre de ces thèmes chevauchent fortement le domaine de l’éthique des données, le thème de l’équité couvre de nombreuses préoccupations éthiques propres à l’IA en raison de la nature des répercussions que les préjugés peuvent avoir sur les modèles d’IA.
   −
Soutenus par le Fonds des résultats (2021 - 2022), le BIPD et GIST réalisent un prototype des systèmes décisionnels automatisés, sur la base des résultats du projet pilote d’IA. L’effort comprend la définition d’un processus interne pour détecter et atténuer les biais, lesquels sont un risque inhérent aux systèmes décisionnels automatisés basés sur l’apprentissage machine. Une étude de cas est conçue pour appliquer ce processus afin d’évaluer et d’atténuer les biais dans un modèle prédictif de détection du comportement de pêche des navires.
+
Soutenus par le Fonds des résultats (2021 - 2022), le BIPD et GIST réalisent un prototype des systèmes décisionnels automatisés, sur la base des résultats du projet pilote d’IA. L’effort comprend la définition d’un processus interne pour détecter et atténuer les biais, lesquels sont un risque inhérent aux systèmes décisionnels automatisés basés sur l’apprentissage machine. Une étude de cas est conçue pour appliquer ce processus afin d’évaluer et d’atténuer les biais dans un modèle prédictif de détection du comportement de pêche des navires. Le processus défini dans ce travail et les résultats de l’étude sur le terrain contribueront aux documents d’orientation qui formeront éventuellement le volet Utilisation responsable de l’IA du cadre d’éthique des données.
    
== Introduction ==
 
== Introduction ==
121

edits

Navigation menu

GCwiki