Changes

Jump to navigation Jump to search
m
no edit summary
Line 99: Line 99:     
<h3 style="text-decoration:none;">[https://arxiv.org/abs/1811.10154 Arrêtez d'expliquer les modèles d'apprentissage automatique de la boîte noire pour les décisions à fort enjeu et utilisez plutôt des modèles interprétables]</h3>
 
<h3 style="text-decoration:none;">[https://arxiv.org/abs/1811.10154 Arrêtez d'expliquer les modèles d'apprentissage automatique de la boîte noire pour les décisions à fort enjeu et utilisez plutôt des modèles interprétables]</h3>
<p class="author">Cynthia Rudin</p>
+
<p class="author">[https://wiki.gccollab.ca/Conf%C3%A9rence_sur_les_donn%C3%A9es_2022_-_Conf%C3%A9renciers#Cynthia_Rudin Cynthia Rudin]</p>
 
<p>(En anglais - titre original : <strong>Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead</strong>) Des modèles d'apprentissage automatique en boîte noire sont actuellement utilisés pour des prises de décision à fort enjeu dans toute la société, causant des problèmes dans les soins de santé, la justice pénale et d'autres domaines. Certaines personnes espèrent que la création de méthodes permettant d'expliquer ces modèles boîte noire atténuera certains des problèmes, mais essayer d'expliquer les modèles boîte noire, plutôt que de créer des modèles interprétables en premier lieu, risque de perpétuer les mauvaises pratiques et peut potentiellement causer un grand tort à la société. La voie à suivre consiste à concevoir des modèles qui sont intrinsèquement interprétables. Cette perspective clarifie le gouffre entre l'explication des boîtes noires et l'utilisation de modèles intrinsèquement interprétables, souligne plusieurs raisons clés pour lesquelles les boîtes noires explicables devraient être évitées dans les décisions à fort enjeu, identifie les défis de l'apprentissage automatique interprétable et fournit plusieurs exemples d'applications où les modèles interprétables pourraient potentiellement remplacer les modèles de boîtes noires dans la justice pénale, les soins de santé et la vision par ordinateur.</p>
 
<p>(En anglais - titre original : <strong>Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead</strong>) Des modèles d'apprentissage automatique en boîte noire sont actuellement utilisés pour des prises de décision à fort enjeu dans toute la société, causant des problèmes dans les soins de santé, la justice pénale et d'autres domaines. Certaines personnes espèrent que la création de méthodes permettant d'expliquer ces modèles boîte noire atténuera certains des problèmes, mais essayer d'expliquer les modèles boîte noire, plutôt que de créer des modèles interprétables en premier lieu, risque de perpétuer les mauvaises pratiques et peut potentiellement causer un grand tort à la société. La voie à suivre consiste à concevoir des modèles qui sont intrinsèquement interprétables. Cette perspective clarifie le gouffre entre l'explication des boîtes noires et l'utilisation de modèles intrinsèquement interprétables, souligne plusieurs raisons clés pour lesquelles les boîtes noires explicables devraient être évitées dans les décisions à fort enjeu, identifie les défis de l'apprentissage automatique interprétable et fournit plusieurs exemples d'applications où les modèles interprétables pourraient potentiellement remplacer les modèles de boîtes noires dans la justice pénale, les soins de santé et la vision par ordinateur.</p>
 
<p class="recco">Recommandé par le Bureau du DPI du Canada, Secrétariat du Conseil du Trésor du Canada, un partenaire de la Communauté des données du GC.</p>
 
<p class="recco">Recommandé par le Bureau du DPI du Canada, Secrétariat du Conseil du Trésor du Canada, un partenaire de la Communauté des données du GC.</p>
2,600

edits

Navigation menu

GCwiki