Changes

Jump to navigation Jump to search
m
no edit summary
Line 184: Line 184:     
[[Image:Intro-to-data-science.jpg|150px|Introduction to data science]]
 
[[Image:Intro-to-data-science.jpg|150px|Introduction to data science]]
<h3 style="text-decoration:none;">Introduction to data science: data analysis and prediction algorithms with R</h3>
+
<h3 style="text-decoration:none;">Introduction à la science des données : analyse des données et algorithmes de prédiction avec R</h3>
 
<p class="author">Rafael Irizarry</p>
 
<p class="author">Rafael Irizarry</p>
<p>Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist's experience.</p>
+
<p>(En anglais - titre original : <strong>Introduction to data science: data analysis and prediction algorithms with R</strong>) Introduction à la science des données : analyse des données et algorithmes de prédiction avec R présente des concepts et des compétences qui peuvent vous aider à relever des défis réels en matière d'analyse de données. Il couvre les concepts de probabilité, d'inférence statistique, de régression linéaire et d'apprentissage automatique. Il vous aide également à développer des compétences telles que la programmation R, le traitement des données, la visualisation des données, la construction d'algorithmes prédictifs, l'organisation des fichiers avec le shell UNIX/Linux, le contrôle de version avec Git et GitHub, et la préparation de documents reproductibles. Ce livre est un manuel pour un premier cours de science des données. Aucune connaissance préalable de R n'est nécessaire, bien qu'une certaine expérience de la programmation puisse être utile. Le livre est divisé en six parties : R, la visualisation des données, les statistiques avec R, le traitement des données, l'apprentissage automatique et les outils de productivité. Chaque partie comporte plusieurs chapitres destinés à être présentés comme un seul cours. L'auteur utilise des études de cas motivantes qui reproduisent de manière réaliste l'expérience d'un scientifique des données.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<br>
 
<br>
    
[[Image:Intro-to-functional-data-analysis.jpg|150px|Introduction to functional data analysis]]
 
[[Image:Intro-to-functional-data-analysis.jpg|150px|Introduction to functional data analysis]]
<h3 style="text-decoration:none;">Introduction to functional data analysis</h3>
+
<h3 style="text-decoration:none;">Introduction à l'analyse fonctionnelle des données</h3>
 
<p class="author">Piotr Kokoszka et Matthew Reimherr</p>
 
<p class="author">Piotr Kokoszka et Matthew Reimherr</p>
<p>Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation.</p>
+
<p>(En anglais - titre original : <strong>Introduction to functional data analysis</strong>) Introduction à l'analyse des données fonctionnelles est un manuel concis d'introduction à ce domaine. Il explique comment analyser les données fonctionnelles, tant au niveau exploratoire qu'inférentiel. Il fournit également une exposition systématique et accessible de la méthodologie et du cadre mathématique requis. Ce livre peut être utilisé comme manuel pour un cours d'un semestre sur l'AFD destiné aux étudiants de premier cycle ou de deuxième cycle en statistiques, ainsi qu'aux étudiants de deuxième et troisième cycles d'autres disciplines, notamment les mathématiques appliquées, les sciences de l'environnement, la santé publique, la recherche médicale, les sciences géophysiques et l'économie. Il peut également être utilisé en autoformation et comme référence pour les chercheurs de ces domaines qui souhaitent acquérir une solide compréhension de la méthodologie de la FDA et des conseils pratiques pour sa mise en œuvre.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<br>
 
<br>
Line 199: Line 199:     
[[Image:Doing-Bayesian-data-analysis.jpg|150px|Doing Bayesian data analysis]]
 
[[Image:Doing-Bayesian-data-analysis.jpg|150px|Doing Bayesian data analysis]]
<h3 style="text-decoration:none;">Doing Bayesian data analysis: a tutorial with R, JAGS, and Stan</h3>
+
<h3 style="text-decoration:none;">Faire de l'analyse bayésienne des données : un tutoriel avec R, JAGS et Stan</h3>
 
<p class="author">John K Kruschke</p>
 
<p class="author">John K Kruschke</p>
<p>Doing Bayesian data analysis: a tutorial with R, JAGS, and Stan. Amsterdam, Academic Press.
+
<p>(En anglais - titre original : <strong>Doing Bayesian data analysis: a tutorial with R, JAGS, and Stan</strong>) Faire de l'analyse bayésienne des données propose une approche accessible de l'analyse bayésienne des données, la matière étant expliquée clairement à l'aide d'exemples concrets. Le livre commence par les bases, notamment les concepts essentiels de probabilité et d'échantillonnage aléatoire, et progresse progressivement vers des méthodes avancées de modélisation hiérarchique pour des données réalistes.</p>
Provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data.</p>
   
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<br>
 
<br>
    
[[Image:Data-assimilation.jpg|150px|Data Assimilation]]
 
[[Image:Data-assimilation.jpg|150px|Data Assimilation]]
<h3 style="text-decoration:none;">Data Assimilation: A Mathematical Introduction (Texts in Applied Mathematics Book 62)</h3>
+
<h3 style="text-decoration:none;">Assimilation des données : Une introduction mathématique</h3>
 
<p class="author">Kody Law, Andrew Stuart et Konstantinos Zygalakis</p>
 
<p class="author">Kody Law, Andrew Stuart et Konstantinos Zygalakis</p>
<p>This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation, covering both theoretical and computational approaches. Specifically the authors develop a unified mathematical framework in which a Bayesian formulation of the problem provides the bedrock for the derivation, development and analysis of algorithms; the many examples used in the text, together with the algorithms which are introduced and discussed, are all illustrated by the MATLAB software detailed in the book and made freely available online. The book is organized into nine chapters: the first contains a brief introduction to the mathematical tools around which the material is organized; the next four are concerned with discrete time dynamical systems and discrete time data; the last four are concerned with continuous time dynamical systems and continuous time data and are organized analogously to the corresponding discrete time chapters. This book is aimed at mathematical researchers interested in a systematic development of this interdisciplinary field, and at researchers from the geosciences, and a variety of other scientific fields, who use tools from data assimilation to combine data with time-dependent models. </p>
+
<p>(En anglais - titre original : <strong>Data Assimilation: A Mathematical Introduction</strong>) Ce livre offre un traitement systématique des fondements mathématiques des travaux sur l'assimilation des données, couvrant à la fois les approches théoriques et informatiques. Plus précisément, les auteurs développent un cadre mathématique unifié dans lequel une formulation bayésienne du problème sert de base à la dérivation, au développement et à l'analyse des algorithmes. Les nombreux exemples utilisés dans le texte, ainsi que les algorithmes présentés et discutés, sont tous illustrés par le logiciel MATLAB détaillé dans le livre et disponible gratuitement en ligne. Le livre est organisé en neuf chapitres : le premier contient une brève introduction aux outils mathématiques autour desquels le matériel est organisé ; les quatre suivants concernent les systèmes dynamiques à temps discret et les données à temps discret ; les quatre derniers concernent les systèmes dynamiques à temps continu et les données à temps continu et sont organisés de manière analogue aux chapitres correspondants sur le temps discret. Ce livre s'adresse aux chercheurs en mathématiques intéressés par un développement systématique de ce domaine interdisciplinaire, ainsi qu'aux chercheurs des géosciences, et d'une variété d'autres domaines scientifiques, qui utilisent les outils de l'assimilation de données pour combiner des données avec des modèles dépendant du temps.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<br>
 
<br>
2,600

edits

Navigation menu

GCwiki