Changes

Jump to navigation Jump to search
10,001 bytes added ,  11:27, 8 February 2022
m
no edit summary
Line 95: Line 95:  
<p class="recco">Recommended by Agriculture and Agri-Food Canada, a GC Data Community partner</p>
 
<p class="recco">Recommended by Agriculture and Agri-Food Canada, a GC Data Community partner</p>
 
<br>
 
<br>
 +
 +
[[Image:Intelligence-artificielle-et-les-mondes-du-travail.jpg|150px|L’intelligence artificielle et les mondes du travail]]
 +
<h3 style="text-decoration:none;">L’intelligence artificielle et les mondes du travail: Perspectives sociojuridiques et enjeux éthiques</h3>
 +
<p class="author">Jean Bernier (éditeur)</p>
 +
<p>Le développement de l'économie numérique et de l'intelligence artificielle (IA) a modifié de façon importante les modes de production des produits et des services, à telle enseigne qu'il oblige les entreprises à revoir leurs pratiques de fonctionnement sur tous les plans. Qui plus est, l'accélération vers le numérique envahit peu à peu le quotidien de chacun et chacune qui voit se transformer parfois en profondeur son activité de travail jusqu'à entraîner une certaine forme de déqualification professionnelle, voire la perte de certains emplois et la création de certains autres, nécessitant un niveau de formation différent et plus élevé. Conçu selon une approche interdisciplinaire et grâce à la contribution d'autrices et d'auteurs québécois, français et belge, le présent ouvrage examine les principaux effets que provoquent ces transformations vers le numérique sur les mondes du travail ainsi que la place de plus en plus importante qu'y occupe l'intelligence artificielle (IA). Il propose un éclairage sur certains des enjeux que suscitent ces transformations tant sur le plan éthique que sur celui du dialogue social et de la gestion des ressources humaines ou encore sur le plan juridique. À ces enjeux s'ajoutent les défis que représentent la dilution de la frontière entre la vie de travail et la vie privée de même que la métamorphose du rapport entre l'entreprise et les personnes salariées qui découle du développement des plateformes numériques. L'ouvrage vise aussi à susciter la réflexion sur la nécessité de revoir les modes de régulation du travail pour lesquels il présente des avenues à explorer.</p>
 +
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
    
[[Image:SCC_Data_Gov_Roadmap_EN_COVER.png |150px|Canadian Data Governance Standardization Collaborative Roadmap]]
 
[[Image:SCC_Data_Gov_Roadmap_EN_COVER.png |150px|Canadian Data Governance Standardization Collaborative Roadmap]]
Line 102: Line 108:  
<p>SCC established the Canadian Data Governance Standardization Collaborative  in 2019 to accelerate the development of industry-wide data governance standardization strategies.  The Collaborative spent the past two years working together to build a standardization Roadmap. The Canadian Data Governance Standardization Collaborative is a group of 220 Canadians across government, industry, civil society, Indigenous organizations, academia, and standards development organizations.</p>
 
<p>SCC established the Canadian Data Governance Standardization Collaborative  in 2019 to accelerate the development of industry-wide data governance standardization strategies.  The Collaborative spent the past two years working together to build a standardization Roadmap. The Canadian Data Governance Standardization Collaborative is a group of 220 Canadians across government, industry, civil society, Indigenous organizations, academia, and standards development organizations.</p>
 
<p class="recco">Recommended by the [https://www.scc.ca/ Standards Council of Canada], friend of the GC Data Community</p>
 
<p class="recco">Recommended by the [https://www.scc.ca/ Standards Council of Canada], friend of the GC Data Community</p>
 +
 +
[[Image:Modelisation-par-equations-structurelles-avec-Mplus.jpg|150px|La modélisation par équations structurelles avec Mplus]]
 +
<h3 style="text-decoration:none;">[https://www.researchgate.net/publication/327703818_La_modelisation_par_equations_structurelles_avec_Mplus La modélisation par équations structurelles avec Mplus]</h3>
 +
<p class="author">Pier-Olivier Caron</p>
 +
<p>La modelisation par equations structurelles s'impose de plus en plus en sciences humaines, que ce soit en psychologie, en sociologie ou en sexologie. L'objectif du present ouvrage est d'offrir aux chercheurs et aux etudiants une introduction a la syntaxe Mplus sous forme d'un guide pratique leur permettant de realiser des analyses de base. Le logiciel Mplus se demarque par la diversite des analyses qu'il offre, sa polyvalence quant a la gestion des donnees (continues, ordinales, binaires, non normales, etc.), son traitement des donnees manquantes et sa simplicite d'utilisation. </p>
 +
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 +
<br>
 +
<br>
 +
<br>
 +
 +
[[Image:Invisible-Women-cover.jpg|150px|Invisible Women: Data Bias in a World Designed for Men, by Caroline Criado Pérez]]
 +
<h3 style="text-decoration:none;">Invisible Women: Data Bias in a World Designed for Men</h3>
 +
<p class="author">by Caroline Criado Pérez</p>
 +
<p>Data is fundamental to the modern world. From economic development, to healthcare, to education and public policy, we rely on numbers to allocate resources and make crucial decisions. But because so much data fails to take into account gender, because it treats men as the default and women as atypical, bias and discrimination are baked into our systems. And women pay tremendous costs for this bias, in time, money, and often with their lives.</p>
 +
<p>Celebrated feminist advocate Caroline Criado Perez investigates the shocking root cause of gender inequality and research in <i>Invisible Women​</i>, diving into women’s lives at home, the workplace, the public square, the doctor’s office, and more. Built on hundreds of studies in the US, the UK, and around the world, and written with energy, wit, and sparkling intelligence, this is a groundbreaking, unforgettable exposé that will change the way you look at the world.</p>
 +
<p class="recco">Recommended by the Office of the CIO of Canada, Treasury Board of Canada Secretariat, a GC Data Community partner</p>
 +
<br>
    
[[Image:Inro-to-data-analysis-with-R-for-Forensic-Scientists.jpg|150px|Introduction to data analysis with R for forensic scientists]]
 
[[Image:Inro-to-data-analysis-with-R-for-Forensic-Scientists.jpg|150px|Introduction to data analysis with R for forensic scientists]]
Line 125: Line 148:  
<br>
 
<br>
   −
[[Image:Invisible-Women-cover.jpg|150px|Invisible Women: Data Bias in a World Designed for Men, by Caroline Criado Pérez]]
+
[[Image:Livre-blanc-une-science-ouverte-dans-une-republique-numerique-guide-strategique.jpg|150px|Qu’est-ce que le text et data mining ?]]
<h3 style="text-decoration:none;">Invisible Women: Data Bias in a World Designed for Men</h3>
+
<h3 style="text-decoration:none;">[https://books.openedition.org/oep/1716?lang=fr Qu’est-ce que le text et data mining ?]</h3>
<p class="author">by Caroline Criado Pérez</p>
+
<p class="author">Direction de l’Information Scientifique et Technique, CNRS</p>
<p>Data is fundamental to the modern world. From economic development, to healthcare, to education and public policy, we rely on numbers to allocate resources and make crucial decisions. But because so much data fails to take into account gender, because it treats men as the default and women as atypical, bias and discrimination are baked into our systems. And women pay tremendous costs for this bias, in time, money, and often with their lives.</p>
+
<p>Le data mining est un concept jeune qui apparaît en 1989 sous un premier nom de KDD (Knowledge Discovery in Databases, en français ECD pour Extraction de Connaissances à partir des Données). Le terme de « text and data mining » est apparu pour la première fois dans le domaine du marketing au début des années 1990. Ce concept, tel qu’appliqué aux services marketing, est étroitement lié au concept du « one-to-one relationship » (Michael Berry et Gordon Linoff, créateurs du data mining dans le m).</p>
<p>Celebrated feminist advocate Caroline Criado Perez investigates the shocking root cause of gender inequality and research in <i>Invisible Women​</i>, diving into women’s lives at home, the workplace, the public square, the doctor’s office, and more. Built on hundreds of studies in the US, the UK, and around the world, and written with energy, wit, and sparkling intelligence, this is a groundbreaking, unforgettable exposé that will change the way you look at the world.</p>
+
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
<p class="recco">Recommended by the Office of the CIO of Canada, Treasury Board of Canada Secretariat, a GC Data Community partner</p>
+
<br>
 
<br>
 
<br>
   Line 160: Line 183:  
<p>This study was designed to gather current public opinion on the public perception of AI in Canada. The research will be used to support the AI Advisory Council's mandate which is to advise the Government of Canada on how "best to build on Canada's AI strengths, identify opportunities to create economic growth that benefits all Canadians and ensure that AI advancements reflect Canadian values". To establish an evidence-based standard of the current public perception of AI and its development, with the goal of better grounding the Canadian discourse in a measured understanding of the technology, its potential uses, and its associated risks.</p>
 
<p>This study was designed to gather current public opinion on the public perception of AI in Canada. The research will be used to support the AI Advisory Council's mandate which is to advise the Government of Canada on how "best to build on Canada's AI strengths, identify opportunities to create economic growth that benefits all Canadians and ensure that AI advancements reflect Canadian values". To establish an evidence-based standard of the current public perception of AI and its development, with the goal of better grounding the Canadian discourse in a measured understanding of the technology, its potential uses, and its associated risks.</p>
 
<p class="recco">Recommended by Agriculture and Agri-Food Canada, a GC Data Community partner</p>
 
<p class="recco">Recommended by Agriculture and Agri-Food Canada, a GC Data Community partner</p>
 +
 +
<h3 style="text-decoration:none;">[https://ised-isde.canada.ca/site/recherche-opinion-publique/fr/opinions-canadiens-lintelligence-artificielle-rapport-final Opinions des Canadiens sur l'intelligence artificielle : Rapport final]</h3>
 +
<p class="author">Innovation, Sciences et Développement économique Canada</p>
 +
<p>Cette étude avait pour but de recueillir l'opinion actuelle du public concernant la perception de l'IA au Canada. La recherche servira à appuyer le mandat du Conseil consultatif en matière d'IA, qui consiste à formuler des recommandations au gouvernement du Canada quant aux « manières de consolider les forces du pays en matière d'IA. De plus, il cernera les possibilités de croissance économique qui procureront des retombées pour tous les Canadiens, et il veillera à ce que les avancées dans le secteur reflètent les valeurs canadiennes ». Le but est d'établir une norme fondée sur des données probantes concernant la perception publique actuelle de l'IA et de son développement, ce qui permettra de mieux étayer le discours canadien grâce à une compréhension mesurée de la technologie, de ses utilisations potentielles et des risques qui y sont associés.</p>
 +
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
    
[[Image:Intro-to-data-science.jpg|150px|Introduction to data science]]
 
[[Image:Intro-to-data-science.jpg|150px|Introduction to data science]]
Line 189: Line 217:  
<p>This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation, covering both theoretical and computational approaches. Specifically the authors develop a unified mathematical framework in which a Bayesian formulation of the problem provides the bedrock for the derivation, development and analysis of algorithms; the many examples used in the text, together with the algorithms which are introduced and discussed, are all illustrated by the MATLAB software detailed in the book and made freely available online. The book is organized into nine chapters: the first contains a brief introduction to the mathematical tools around which the material is organized; the next four are concerned with discrete time dynamical systems and discrete time data; the last four are concerned with continuous time dynamical systems and continuous time data and are organized analogously to the corresponding discrete time chapters. This book is aimed at mathematical researchers interested in a systematic development of this interdisciplinary field, and at researchers from the geosciences, and a variety of other scientific fields, who use tools from data assimilation to combine data with time-dependent models. </p>
 
<p>This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation, covering both theoretical and computational approaches. Specifically the authors develop a unified mathematical framework in which a Bayesian formulation of the problem provides the bedrock for the derivation, development and analysis of algorithms; the many examples used in the text, together with the algorithms which are introduced and discussed, are all illustrated by the MATLAB software detailed in the book and made freely available online. The book is organized into nine chapters: the first contains a brief introduction to the mathematical tools around which the material is organized; the next four are concerned with discrete time dynamical systems and discrete time data; the last four are concerned with continuous time dynamical systems and continuous time data and are organized analogously to the corresponding discrete time chapters. This book is aimed at mathematical researchers interested in a systematic development of this interdisciplinary field, and at researchers from the geosciences, and a variety of other scientific fields, who use tools from data assimilation to combine data with time-dependent models. </p>
 
<p class="recco">Recommended by Agriculture and Agri-Food Canada, a GC Data Community partner</p>
 
<p class="recco">Recommended by Agriculture and Agri-Food Canada, a GC Data Community partner</p>
 +
<br>
 +
 +
[[Image:Analyse-des-donnees-textuelles.jpg|150px|Analyse des données textuelles]]
 +
<h3 style="text-decoration:none;">Analyse des données textuelles</h3>
 +
<p class="author">Ludovic Lebart, Bénédicte Pincemin et Céline Poudat</p>
 +
<p>L’analyse des données textuelles (ADT) permet d’explorer et de visualiser les recueils de textes les plus divers : œuvres littéraires, transcriptions d’entretien, discours politiques, dossiers de presse, documents d’archives, enquêtes en ligne avec questions ouvertes, fichiers de réclamations, sondages de satisfaction. Le présent ouvrage procède à une présentation rigoureuse des méthodes de l’ADT, qui combinent statistique exploratoire, visualisations, procédures de validation quantitative et approche qualitative.</p>
 +
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 +
<br>
 
<br>
 
<br>
   Line 196: Line 232:  
<p>Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book's website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data;The authors put a computational emphasis on the methods used to visualise and summarise data before making model assumptions to generate hypotheses. They use MATLAB code and algorithmic descriptions to provide the user with state-of-the-art techniques for finding patterns and structure in data.</p>
 
<p>Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book's website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data;The authors put a computational emphasis on the methods used to visualise and summarise data before making model assumptions to generate hypotheses. They use MATLAB code and algorithmic descriptions to provide the user with state-of-the-art techniques for finding patterns and structure in data.</p>
 
<p class="recco">Recommended by Agriculture and Agri-Food Canada, a GC Data Community partner</p>
 
<p class="recco">Recommended by Agriculture and Agri-Food Canada, a GC Data Community partner</p>
 +
<br>
 +
 +
[[Image:Big-data-et-tracabilite-numerique.jpg|150px|Big data et traçabilité numérique]]
 +
<h3 style="text-decoration:none;">Big data et traçabilité numérique</h3>
 +
<p class="author">Pierre-Michel Menger et Simon Paye (éditeurs)</p>
 +
<p>Les traces numériques de l’activité des individus, des entreprises, des administrations, des réseaux sociaux sont devenues un gisement considérable. Comment ces données sont-elles prélevées, stockées, valorisées, et vendues ? Et que penser des algorithmes qui convertissent en outil de contrôle et de persuasion l’information sur les comportements, les actes de travail et les échanges ? Les big data sont-elles à notre service ou font-elles de nous les rouages consentants du capitalisme informationnel et relationnel ? Les sciences sociales enquêtent sur les enjeux sociaux, éthiques, politiques et économiques de ces transformations. Mais elles sont elles aussi de plus en plus consommatrices de données numériques de masse. Cet ouvrage collectif explore l’expansion de la traçabilité numérique dans ces deux dimensions, marchande et scientifique. L’ouvrage est dirigé par Pierre-Michel Menger, professeur au Collège de France et titulaire de la chaire « Sociologie du travail créateur », et par Simon Paye, maître de conférences à l’université de Lorraine, sociologue du travail et des groupes professionnels.</p>
 +
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 +
<br>
 +
 +
[[Image:Big-data-et-societe.jpg|150px|Big Data et société]]
 +
<h3 style="text-decoration:none;">Big Data et société: Industrialisation des médiations symboliques</h3>
 +
<p class="author">André Mondoux et Marc Ménard (éditeurs)</p>
 +
<p>Le Big Data (ou mégadonnées) suscite des discours porteurs de visions économiques prometteuses : efficience du microciblage, meilleurs rendements par gestion prédictive, algorithmes et intelligence artificielle, villes intelligentes . bref, toute une économie des données qui trouverait son achèvement véritable dans une créativité enfin libérée de tout joug disciplinaire, idéologique et politique. L'éclatement des individualités émancipées sonde le social tel qu'il est porté par ces discours de promotion. En effet, force est de constater que le social est relativement absent, pour l'instant, des réflexions que l'on présente comme névralgiques pour un avenir meilleur. Ce phénomène soulève d'importantes et préoccupantes questions, que ce soit concernant l'intégrité de la vie privée face à la marchandisation des données personnelles, les dynamiques - économiquement productives - de la surveillance corporative, les rapports de pouvoir induits par les GAFAM (Google, Apple, Facebook, Amazon et Microsoft), les pièges du temps réel ou encore la dynamique algorithmique et sa tendance à suppléer les lois (le politique) par les faits (le réel enfin rendu indéniable grâce aux données quantifiables). Ce premier ouvrage collectif du Groupe de recherche sur l'information et la surveillance au quotidien (GRISQ) envisage le Big Data comme producteur d'effets en même temps que produit de dynamiques sociales. Il intéressera les étudiants et les chercheurs du domaine de la communication qui s'interrogent sur le vaste univers des mégadonnées.</p>
 +
<p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p>
 
<br>
 
<br>
  
2,600

edits

Navigation menu

GCwiki