Changes

Jump to navigation Jump to search
m
no edit summary
Line 110: Line 110:  
<p><i>Numbersense</i> gives you the insight into how Big Data interpretation works--and how it too often doesn't work. You won't come away with the skills of a professional statistician, but you will have a keen understanding of the data traps even the best statisticians can fall into, and you'll trust the mental alarm that goes off in your head when something just doesn't seem to add up.</p>
 
<p><i>Numbersense</i> gives you the insight into how Big Data interpretation works--and how it too often doesn't work. You won't come away with the skills of a professional statistician, but you will have a keen understanding of the data traps even the best statisticians can fall into, and you'll trust the mental alarm that goes off in your head when something just doesn't seem to add up.</p>
 
<p class="recco">Recommended by the Office of the CIO of Canada, Treasury Board of Canada Secretariat, a GC Data Community partner</p>
 
<p class="recco">Recommended by the Office of the CIO of Canada, Treasury Board of Canada Secretariat, a GC Data Community partner</p>
 +
 +
<!--[[Image:R-for-political-data-science.jpg|150px|R for Political Data Science: A Practical Guide]]-->
 +
<h3 style="text-decoration:none;">R for Political Data Science: A Practical Guide</h3>
 +
<p class="author">by Francisco Urdinez and Andrés Cruz (editors)</p>
 +
<p>R for Political Data Science: A Practical Guide is a handbook for political scientists new to R who want to learn the most useful and common ways to interpret and analyze political data. It was written by political scientists, thinking about the many real-world problems faced in their work. The book has 16 chapters and is organized in three sections. The first, on the use of R, is for those users who are learning R or are migrating from another software. The second section, on econometric models, covers OLS, binary and survival models, panel data, and causal inference. The third section is a data science toolbox of some the most useful tools in the discipline: data imputation, fuzzy merge of large datasets, web mining, quantitative text analysis, network analysis, mapping, spatial cluster analysis, and principal component analysis. As the title suggests, this book is highly applied in nature, and is designed as a toolbox for the reader. It can be used in methods and data science courses, at both the undergraduate and graduate levels. It will be equally useful for a university student pursuing a PhD, political consultants, or a public official, all of whom need to transform their datasets into substantive and easily interpretable conclusions.</p>
 +
<p class="recco">Recommended by Agriculture and Agri-Food Canada, a GC Data Community partner</p>
    
<br>
 
<br>
2,600

edits

Navigation menu

GCwiki