Changes

Jump to navigation Jump to search
497 bytes added ,  20:41, 15 December 2021
no edit summary
Line 8: Line 8:       −
== The Problem ==
+
== The Challenge ==
 
Illegal, Unreported, and Unregulated fishing (IUU) has many negative environmental, economic, and social impacts.  
 
Illegal, Unreported, and Unregulated fishing (IUU) has many negative environmental, economic, and social impacts.  
   Line 18: Line 18:     
== The Solution ==
 
== The Solution ==
[[File:Speed.jpg|alt=Fishing activity, shown in red, is most common for speeds in the range of 2 to 5 knots and is also associated with larger deviations in speed and course.|162x162px|Fishing activity, shown in red, is most common for speeds in the range of 2 to 5 knots and is also associated with larger deviations in speed and course <ref>Tracking the global footprint of fisheries, David A. Kroodsma et al, SCIENCE 23 FEB 2018 : 904-908</ref>.|thumb]]
+
Vessel tracking data such as Automatic Identification System (AIS) data and Vessel Monitoring System (VMS) data can provide insight into vessel movements. AI algorithms have the ability to analyse vessel movements data to reavel patterns of fishing activities and behavior. The main idea is that vessel speed and course can be useful indicators to identify behavioural markers of fishing. Eventually, the goal is to create a Maritime E-Surveillance System, powered by AI, to support to maritime surveillance of fishing activities / vessel activities. Such system can give Canadian fishery officers a bird’s eye view over what is happening on the water and provide them with the required insights enabling them to manage effectively their enforcement efforts. The diagram below explains the high level overview of such system.
Vessel tracking data such as Automatic Identification System (AIS) data and Vessel Monitoring System (VMS) data can provide insight into vessel movements. This data can be used to generate estimated trajectories for moving vessels and provide an excellent resource for revealing patterns of fishing activities and behavior. Vessel speed and course can be useful indicators of vessel fishing activity.
+
[[File:Iuu ai.png|center|frameless|606x606px]]
   −
* Predictive Model to predict vessels positions indicative of fishing activity and hence predict the fishing effort within a specified region of interest.
     −
* Predictive Model to find spatial hot spots of fishing activities, and hence find anomalous behaviour and focus enforcement efforts.
+
Supported by the 2020 – 2021 Results Fund, a Proof of Concept (POC) was developed for the automated detection of vessel fishing activity using an AI model. The resulting predictive model takes vessel movement tracks as input and outputs the vessel tracks annotated with its activity i.e. fishing or not-fishing, as illustrated below.
 +
 
 +
[[File:FishingDetectionModel.png|center|frameless|674x674px|'''Predictive model for detecting fishing behaviour: input and output''']]
 +
The model uses features such as vessel speed standard deviation, course standard deviation, and fishing gear type to detect vessel activity. The insight gained from the predictive model is then combined with other data sources, such as fisheries management areas and license conditions to detect non-compliance with fisheries regulations.
 +
 
            −
[[File:Iuu ai.png|right|frameless|478x478px]]
            
== References ==
 
== References ==

Navigation menu

GCwiki