Changes

Jump to navigation Jump to search
no edit summary
Line 1: Line 1:  
{{DISPLAYTITLE:<span style="position: absolute; clip: rect(1px 1px 1px 1px); clip: rect(1px, 1px, 1px, 1px);">{{FULLPAGENAME}}</span>}}
 
{{DISPLAYTITLE:<span style="position: absolute; clip: rect(1px 1px 1px 1px); clip: rect(1px, 1px, 1px, 1px);">{{FULLPAGENAME}}</span>}}
[[en:Technology_Trends/5G_Networks]]
+
[[fr:Tendances_Technologiques/Réseaux_5G]]
   −
<div class="mw-collapsible" data-highlightedtext="Afficher la Vue Détaillée" data-collapsetext="Cacher la Vue Détaillée">
+
<div class="mw-collapsible" data-expandtext="Show Detailed View" data-collapsetext="Hide Detailed View">
 
   <div class="sidetable">
 
   <div class="sidetable">
 
     <table class="wikitable">
 
     <table class="wikitable">
Line 9: Line 9:  
           <table class="breadcrumb-table">
 
           <table class="breadcrumb-table">
 
             <tr>
 
             <tr>
               <th>[[Tendances_Technologiques|Tendances Technologiques]]</th>
+
               <th>[[Technology_Trends|Technology Trends]]</th>
 
               <th> / </th>
 
               <th> / </th>
               <th>Réseaux 5G</th>
+
               <th>5G Networks</th>
 
             </tr>
 
             </tr>
 
           </table>
 
           </table>
 
           <table class="breadcrumb-table">
 
           <table class="breadcrumb-table">
 
             <tr>
 
             <tr>
               <th>[[Technology_Trends|Technology Trends]]</th>
+
               <th>[[Tendances_Technologiques|Tendances Technologiques]]</th>
 
               <th> / </th>
 
               <th> / </th>
               <th>[[Technology_Trends/5G_Networks|5G Networks]]</th>
+
               <th>[[Tendances_Technologiques/Réseaux_5G|Réseaux 5G]]</th>
 
             </tr>
 
             </tr>
 
           </table>
 
           </table>
Line 26: Line 26:  
       <tr>
 
       <tr>
 
         <th>Status</th>
 
         <th>Status</th>
         <td>Publié</td>
+
         <td>Published</td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
         <th>Version original</th>
+
         <th>Initial release</th>
         <td>25 juin 2019</td>
+
         <td>June 25, 2019</td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
         <th>Mise à jour</th>
+
         <th>Latest version</th>
         <td>22 juillet 2019</td>
+
         <td>July 22, 2019</td>
 
       </tr>
 
       </tr>
 
       <tr>
 
       <tr>
         <th>Publication officiel</th>
+
         <th>Official publication</th>
         <td>[[Media:FR_-_Tendances_Technologiques_-_Réseaux_5G.pdf|Réseaux 5G.pdf]]</td>
+
         <td>[[Media:EN_-_Technology_Trends_-_5G_Networks.pdf|5G Networks.pdf]]</td>
 
       </tr>
 
       </tr>
 
       <tr><td colspan="2" class="disclaimer"><table><tr>
 
       <tr><td colspan="2" class="disclaimer"><table><tr>
 
         <td>[[File:Traffic_cone.png|40px]]</td>
 
         <td>[[File:Traffic_cone.png|40px]]</td>
         <td class="disclaimerText">Cette page est sujet à des mises à jours. On encourage toutes rétroactions. Veuillez utiliser la page de discussion pour apporter des commentaires et des suggestions. Une fois que cette version soit approuvée et finalisée, elle va être traduit.</td>
+
         <td class="disclaimerText">This page is a work in progress. We welcome your feedback. Please use the discussion page for suggestions and comments. When the page is approved and finalized, we will send it for translation.</td>
 
       </tr></table></td></tr>
 
       </tr></table></td></tr>
 
     </table>
 
     </table>
 
   </div>
 
   </div>
   −
    <br><p><b>5G Networks</b> également appelée 5G NR (pour l’anglais new radio), représente la technologie cellulaire sans fil de 5e génération.<ref>Sega, Sashca, “What is 5G”, PCMag, 20 March 2018.<i> [https://www.pcmag.com/article/345387/what-is-5g/ What is 5G]</i></ref>  Dans l’univers mobile, une génération (G) indique généralement une rupture de compatibilité, autrement dit que les utilisateurs auront besoin de renouveler leurs appareils<ref>Segan, S., & Segan, S. (2019, January 07). 5G vs. 5G E vs. 5GHz: What's the Difference? <i>[https://www.pcmag.com/article/365754/5g-vs-5g-e-vs-5ghz-whats-the-difference/  5G vs. 5G E vs. 5GHz: What's the Difference?]</i></ref>.  Bien que les générations de technologies sans fil aient été techniquement définies par leur vitesse de transmission de données, elles ont toutes été marquées par une rupture dans les méthodes de chiffrement, ou « interfaces radio », qui les rendent incompatibles avec la génération précédente.<ref>Sega, Sashca, “What is 5G”, PCMag, 20 March 2018.<i> [https://www.pcmag.com/article/345387/what-is-5g/ What is 5G]</i></ref></p>
+
  <br><p><b>5G Networks</b> also known as 5G NR (“new radio”), stands for 5th-Generation cellular wireless technology.<ref>Sega, Sashca, “What is 5G”, PCMag, 20 March 2018.<i> [https://www.pcmag.com/article/345387/what-is-5g/ What is 5G]</i></ref>  In the mobile universe, a generation (a ‘G’) usually indicates a compatibility break – meaning that users will need new equipment<ref>Segan, S., & Segan, S. (2019, January 07). 5G vs. 5G E vs. 5GHz: What's the Difference? <i>[https://www.pcmag.com/article/365754/5g-vs-5g-e-vs-5ghz-whats-the-difference/  5G vs. 5G E vs. 5GHz: What's the Difference?]</i></ref>.  Although wireless generations have technically been defined by their data transmission speeds, each has also been marked by a break in encoding methods, or “air interfaces,” that make it incompatible with the previous generation.<ref>Sega, Sashca, “What is 5G”, PCMag, 20 March 2018.<i> [https://www.pcmag.com/article/345387/what-is-5g/ What is 5G]</i></ref></p>
    
   <div class="mw-collapsible-toggle btn" style="float: left; display: block;">
 
   <div class="mw-collapsible-toggle btn" style="float: left; display: block;">
     <div class="toggle mw-collapsible-toggle-collapsed" role="button" tabindex="0"><span class="mw-collapsible-text">Cacher la Vue Détaillée</span></div>
+
     <div class="toggle mw-collapsible-toggle-collapsed" role="button" tabindex="0"><span class="mw-collapsible-text">Hide Detailed View</span></div>
 
   </div><br><br>
 
   </div><br><br>
   −
   <h2>Sommaire opérationnel</h2>
+
   <h2>Business Brief</h2>
   −
   <p>Les fournisseurs d’infrastructures Internet se rendent compte du fait que le réseau de quatrième génération (4G) actuel n’est pas en mesure de faire face à l’augmentation du trafic de données mobiles. D’ici 2020, le trafic projeté de données sera trop important pour que les réseaux 4G puissent les prendre en charge. Afin de résoudre ce problème, les fournisseurs et les consommateurs devront passer aux réseaux 5G.</p>
+
   <p>With today’s 4G network, internet infrastructure providers are quickly realizing that 4G is not equipped to handle the increase in mobile data traffic. By 2020, the projected mobile traffic will be too great for 4G networks to support. To resolve this issue, providers and consumers will need to make the shift to 5G networks.</p>
   −
   <p class="highlighted mw-collapsible-content"><b>1G – Voix analogique : </b>Date de la fin des années 1970; les premiers téléphones cellulaires ne fournissaient que des appels vocaux. Des années plus tard, certains téléphones cellulaires 1G fournissaient à l’occasion des services de données sans fil à un ordinateur portable si on les branchait au modem commuté de l’ordinateur, mais les connexions étaient précaires et, si elles fonctionnaient, la vitesse de transfert des données était très basse <ref>Encyclopedia. (n.d.). Retrieved from <i>[https://www.pcmag.com/encyclopedia/term/55406/cellular-generations/ cellular generations]</i></ref>.</p>
+
   <p class="expand mw-collapsible-content"><b>1G – Analog Voice: </b>introduced in the late 1970s, the first cellphones provided voice-only calls. Years later, some 1G cellphones occasionally provided wireless data service to a laptop by connecting them to the laptop's dial-up modem, but hookups were precarious, and when it worked, the data transfer rate was minuscule <ref>Encyclopedia. (n.d.). Retrieved from <i>[https://www.pcmag.com/encyclopedia/term/55406/cellular-generations/ cellular generations]</i></ref>.</p>
 +
 
 +
  <p class="expand mw-collapsible-content"><b>2G – Digital Networks: </b>introduction of a new digital technology for wireless transmission also known as Global System for Mobile communication (GSM). GSM technology became the base standard for further development in wireless standards. This standard was capable of supporting a data rate from 14.4kbps up to 64kbps (maximum), which is sufficient for SMS and email services. Data networks (GPRS, EDGE, IS-95B) were added and commonly called 2.5G and 2.75G technologies.<ref>Rajiv, & Noman, S. (2018, December 14). Evolution of wireless technologies 1G to 5G in mobile communication. Retrieved from <i>[https://www.rfpage.com/evolution-of-wireless-technologies-1g-to-5g-in-mobile-communication/]</i></ref></p>
 +
 
 +
  <p class="expand mw-collapsible-content"><b>3G – High speed IP Data Networks: </b>the third generation, features faster access to the Internet with downstream speeds up to 1 Mbps and more, depending on the 3G version<ref>Encyclopedia. (n.d.). Retrieved from <i>[https://www.pcmag.com/encyclopedia/term/55406/cellular-generations/ cellular generations]</i></ref>.  Third generation mobile communication started with the introduction of UMTS – Universal Mobile Terrestrial / Telecommunication Systems. After the introduction of 3G mobile communication systems, smart phones became popular across the globe. Specific applications were developed for smartphones, which handle multimedia chat, email, video calling, games, social media and healthcare.<ref>Rajiv, & Noman, S. (2018, December 14). Evolution of wireless technologies 1G to 5G in mobile communication. Retrieved from <i>[https://www.rfpage.com/evolution-of-wireless-technologies-1g-to-5g-in-mobile-communication/]</i></ref>.
   −
   <p class="highlighted mw-collapsible-content"><b>2G – Réseaux numériques : </b>Arrivée d’une nouvelle technologie numérique pour la transmission sans fil également connue sous le nom de Global System for Mobile communication (GSM). La technologie GSM est devenue la norme de base pour l’élaboration ultérieure des normes applicables au sans-fil. La 2G pouvait prendre en charge un débit de données de 14,4 kb/s à 64 kb/s (maximum), ce qui est suffisant pour les services de SMS et de messagerie. Des réseaux de données (GPRS, EDGE, IS-95B) ont été ajoutés et communément appelés technologies 2.5G et 2.75G.<ref>Rajiv, & Noman, S. (2018, December 14). Evolution of wireless technologies 1G to 5G in mobile communication. Retrieved from <i>[https://www.rfpage.com/evolution-of-wireless-technologies-1g-to-5g-in-mobile-communication/]<i></ref></p>
+
   <p class="highlighted mw-collapsible-content">In order to enhance data rate in existing 3G networks, another two technology improvements were introduced to the network. HSDPA – High Speed Downlink Packet access and HSUPA – High Speed Uplink Packet Access, developed and deployed to the 3G networks, known as 3.5G. The next 3G development, known as the 3.75 system, is an improved version of 3G networking with HSPA+ – High Speed Packet Access Plus. Later, this system would evolve into the more powerful 3.9G system known as LTE (Long Term Evolution).</p>
   −
   <p class="highlighted mw-collapsible-content"><b>3G Réseaux de données IP haute vitesse :</b> La troisième génération offre un accès plus rapide à Internet avec des débits en aval allant jusqu’à 1 Mb/s et même plus, selon la version de la 3G<ref>Encyclopedia. (n.d.). Retrieved from <i>[https://www.pcmag.com/encyclopedia/term/55406/cellular-generations/ cellular generations]</i></ref>. La troisième génération de communications mobiles a commencé avec les Universal Mobile Terrestrial / Telecommunication Systems (UMTS). Après l’arrivée des systèmes de communication mobile 3G, les téléphones intelligents ont gagné en popularité dans le monde entier. Des applications ont été développées expressément pour les téléphones intelligents, pour le clavardage multimédia, la messagerie électronique, les appels vidéo, les jeux, les médias sociaux et les soins de santé.<ref>Rajiv, & Noman, S. (2018, December 14). Evolution of wireless technologies 1G to 5G in mobile communication. Retrieved from <i>[https://www.rfpage.com/evolution-of-wireless-technologies-1g-to-5g-in-mobile-communication/]<i></ref>.</p>
+
   <p class="expand mw-collapsible-content"><b>4G Growth of Mobile Broadband: </b>4G systems are enhanced versions of 3G networks developed by IEEE, offerings higher data rate and capable to of handle handling more advanced multimedia services. LTE and LTE advanced wireless technology are used in 4th generation systems. Furthermore, it has compatibility with previous versions thus easier deployment and upgrade of LTE and LTE advanced networks are possible.<ref>Rajiv, & Noman, S. (2018, December 14). Evolution of wireless technologies 1G to 5G in mobile communication. Retrieved from <i>[https://www.rfpage.com/evolution-of-wireless-technologies-1g-to-5g-in-mobile-communication/]</i></ref>.</p>
 +
 
 +
  <p class="expand mw-collapsible-content">It is basically the extension in the 3G technology with more bandwidth and services. One of the main ways in which 4G differed technologically from 3G was in its elimination of circuit switching, instead employing an all-IP network. Thus, 4G ushered in a treatment of voice calls just like any other type of streaming audio media, utilizing packet switching over internet, LAN or WAN networks via VoIP.<ref>NA. (2008, 08 23). 1G, 2G, 3G, 4G - The Evolution of Wireless Generations. Retrieved from Support.Chinavision:<i> https://support.chinavasion.com/index.php?/Knowledgebase/Article/View/284/42/1g-2g-3g-4g---the-evolution-of-wireless-generations</i></ref></p>
 +
 
 +
  <p><b>5G – Unlicensed Spectrum: </b>a 5G network has three main advantages over its predecessor:</p>
 
      
 
      
  <p class="highlighted mw-collapsible-content">Afin d’améliorer le débit de données dans les réseaux 3G existants, deux autres améliorations technologiques ont été apportées au réseau : l’accès par paquets en liaison descendante haut débit ou HSDPA pour High Speed Downlink Packet Access et l’accès par paquets en liaison montante haut débit ou HSUPA pour High Speed Uplink Packet Access, mis au point et déployés sur les réseaux 3G, appelés 3.5G. L’évolution suivante de la 3G, appelée 3.75, est une version améliorée du réseau 3G avec accès par paquets haut débit évolué ou HSPA+ pour High Speed Packet Access Plus. Plus tard, ce système deviendra le puissant 3.9G qu’on appellera technologie d’évolution à long terme ou LTE pour Long Term Evolution.</p>
  −
  −
  <p class="highlighted mw-collapsible-content"><b>4G – Augmentation de la bande passante mobile :</b> Les systèmes 4G sont des versions améliorées des réseaux 3G développés par IEEE, qui offrent un débit de données plus élevé et sont capables de gérer des services multimédias avancés. Les technologies sans fil LTE et LTE évoluée sont utilisées dans les systèmes de 4e génération. De plus, la 4G est compatible avec les versions précédentes, ce qui facilite le déploiement et la mise à niveau des réseaux LTE et LTE évoluée.<ref>Rajiv, & Noman, S. (2018, December 14). Evolution of wireless technologies 1G to 5G in mobile communication. Retrieved from <i>[https://www.rfpage.com/evolution-of-wireless-technologies-1g-to-5g-in-mobile-communication/]<i></ref>.  Il s’agit essentiellement d’une extension de la technologie 3G avec plus de bande passante et de services. L’une des principales différences technologiques de la 4G par rapport à la 3G réside dans l’élimination de la commutation de circuits et l’utilisation d’un réseau IP de bout en bout. Ainsi, la 4G a permis de traiter les appels vocaux comme n’importe quel autre type de média audio en continu au moyen de la commutation de paquets sur Internet, d’un réseau local ou d’un réseau étendu, par voix sur IP.<ref>NA. (2008, 08 23). 1G, 2G, 3G, 4G - The Evolution of Wireless Generations. Retrieved from Support.Chinavision:<i> https://support.chinavasion.com/index.php?/Knowledgebase/Article/View/284/42/1g-2g-3g-4g---the-evolution-of-wireless-generations</i></ref></p>
  −
  −
  <p><b>5G – Spectre sans licence :</b> Le réseau 5G présente trois avantages principaux par rapport à son prédécesseur :</p>
  −
   
   <ul>
 
   <ul>
     <li>il peut offrir une vitesse de téléchargement de données de 10 à 20 Gb/s;</li>
+
     <li>It is set to offer between 10 and 20Gbps data download speed;</li>
     <li>il offre une faible latence, inférieure à une milliseconde, un point crucial pour les applications qui doivent être mises à jour en temps réel;</li>
+
     <li>It offers low latency, of less than a millisecond, which is crucial for applications that need to be updated in real-time; and</li>
     <li>comme cette technologie utilise des ondes radio millimétriques pour la transmission, elle peut fournir une bande passante supérieure sur les réseaux LTE actuels ainsi que des débits de données beaucoup plus élevés.</li>
+
     <li>Because the technology makes use of millimeter radio waves (mmWave) for transmission, it can provide higher bandwidth over current LTE networks, as well as much higher data rates.</li>
 
   </ul>
 
   </ul>
   −
   <p>Concrètement, les réseaux 5G seront ainsi en mesure de fournir un accès à l’entreposage en nuage et d’exécuter des applications opérationnelles et auront le pouvoir d’exécuter virtuellement des tâches plus complexes. Le réseau 5G offre la possibilité de connecter 100 fois plus d’appareils que les ondes 4G LTE. Il peut permettre également de réduire la consommation d’énergie de 90 % par rapport à la 4G tout en assurant des vitesses Internet uniquement atteintes actuellement grâce à une connexion réseau directe par l’intermédiaire d’un câble à fibres optiques.</p>
+
   <p>In practical terms, this means that 5G networks will be able to provide access to cloud storage, the ability to run enterprise applications, and the power to run more complex tasks virtually. A 5G network also offers the possibility of 100x more device connections than 4G LTE. It may also offer a 90% reduction in energy consumption compared to 4G, while providing internet speeds currently only capable of being achieved through a direct network connection via fiber optic cable.</p>
   
  −
  <p>La 5G est de plus prête à transformer le monde des appareils de l’Internet des objets. L’utilisation des ondes radio millimétriques et du réseau central 5G non seulement accélère la transmission de données, mais accroît aussi la fiabilité de connexion. On améliore ainsi la connectivité des nouveaux types d’applications mobiles, l’automatisation industrielle et les véhicules autonomes, entre autres. Pour l’essentiel, toute application de l’Internet des objets qui utilise actuellement la technologie LPWA (Low Power Wide Area) connaîtra des améliorations progressives. De nombreux fournisseurs d’appareils cellulaires sont prêts à lancer des téléphones intelligents et d’autres appareils capables de se connecter aux réseaux 5G d’ici la fin de 2019. Actuellement, des entreprises comme AT&T ont lancé la 5G Evolution, une évolution de la 4G LTE qui n’offre cependant pas toutes les capacités de la 5G.</p>
  −
 
  −
  <h2>Sommaire technique</h2>
  −
 
  −
  <p>Tout comme les réseaux cellulaires actuels, la 5G divise le territoire en petits secteurs dans lesquels les appareils se connectent aux sites cellulaires. Ces sites cellulaires sont alors en mesure de transmettre des données chiffrées en utilisant des ondes radioélectriques. La différence entre la 5G et son prédécesseur réside dans sa capacité à transmettre ces ondes radio à des fréquences beaucoup plus élevées, ce qui se traduit par des vitesses de transmission de données supérieures, même à celle des réseaux de fibres optiques actuels, soit 1 Gb/s. Cette évolution, aussi petite soit-elle, a déjà eu son application dans le monde réel lorsque Sprint a lancé une fonctionnalité similaire avec sa technologie LAA. Dans le spectre des ondes millimétriques, ces fréquences se situent entre 30 et 300 GHz.</p>
  −
  <p>Deux séries de fréquences sont en cours d’approbation par la Federal Communications Commission des États-Unis. Les réseaux d’ondes 5G de bande basse et 5G centrales utilisent des fréquences de 600 MHz à 6 GHz, surtout 3,5 à 4,2 GHz. Les ondes centrales n’affecteront probablement pas beaucoup le matériel existant utilisé pour le sans-fil. Bien qu’il soit nécessaire d’utiliser des amplificateurs de puissance pour éviter une forte atténuation du signal, les ondes millimétriques constitueront une réelle évolution des technologies sans fil au point de nécessiter un tout nouveau système d’antennes, de câbles et d’amplificateurs.</p>
  −
 
  −
  <p>Les réseaux 5G seront utilisés avec des sites cellulaires beaucoup plus petits. Les ondes radio à haute fréquence ne peuvent parcourir que de courtes distances en comparaison des ondes 4G LTE, à plus basse fréquence. Comme le signal 5G ne peut être transmis que sur la longueur d’un pâté de maisons ou à peu près et ne peut pas pénétrer dans les bâtiments, il n’y aura plus besoin de grandes tours, au profit de petites tours de téléphonie cellulaire installées sur chaque pâté de maisons et à l’intérieur des bâtiments. Cela signifie également que la vitesse des réseaux individuels sera plus importante qu’auparavant.</p><p class="inline">Un article rédigé par des professeurs des universités de Waterloo, Carleton et Ozyegin explique que les réseaux 5G pourraient transformer complètement l’architecture cellulaire actuelle. Ils expliquent que pour que la 5G puisse fonctionner avec une telle demande de bande passante sur le réseau par les appareils de l’Internet des objets, l’architecture cellulaire traditionnelle peut être divisée en une architecture à deux niveaux : 1) un niveau macrocellulaire, pour la communication entre la station et l’appareil et 2) un niveau équipements, pour la communication entre appareils.</p> <p class="highlighted inline mw-collapsible-content"> Cependant, la situation n’est pas sans risques pour la sécurité. La communication entre appareils nécessite une sécurité réseau plus complexe que l’actuelle. La communication est possible grâce à l’utilisation de relais entre appareils; les appareils connectés se servent les uns des autres pour retransmettre des données, ce qui crée un réseau maillé ad hoc. De cette façon, les appareils peuvent communiquer entre eux dans une largeur de bande cellulaire autorisée sans l’utilisation d’une station de base. Il s’agit d’un changement radical par rapport à l’architecture cellulaire traditionnelle où les téléphones cellulaires se connectent à une tour de téléphonie cellulaire.</p>
  −
 
  −
  <p class="highlighted mw-collapsible-content">Auparavant, la communication entre appareils n’était utilisée qu’à de rares occasions. La demande à cet effet a récemment augmenté au gré de la commercialisation d’applications contextuelles. Ces applications nécessitent généralement à la fois des services de localisation et la capacité de communiquer avec d’autres appareils. En accédant à cette capacité par la technologie nécessaire, on réaliserait des économies puisque ce ne serait pas tous les appareils du réseau qui auraient besoin d’être connectés à la station de base. La communication entre appareils pourrait également jouer un rôle dans l’infonuagique mobile et rendre le partage des ressources plus efficace. Si un dispositif se trouve en périphérie d’un site cellulaire ou dans une zone encombrée, la communication entre appareils pourrait libérer la station de base d’une importante consommation de ressources.</p>
  −
 
  −
  <h2>Utilisation par l'industrie</h2>
  −
  <p>Plusieurs fournisseurs de télécommunications aux États-Unis ont commencé à développer et à mettre à l’essai des réseaux 5G. Des fournisseurs de télécommunications comme Verizon, AT&T et Sprint ont tous fait des progrès dans ce domaine et mènent chacun des projets de recherche pour tester les réseaux. Verizon, AT&T, Sprint et T-Mobile ont tous commencé à déployer la 5G sur différents marchés et continueront à le faire tout au long de 2019. Verizon dispose de la 5G fixe et mobile dans quelques régions. AT&T dispose de la 5G mobile pour certaines entreprises dans certaines villes alors que Sprint déploie la 5G dans certaines zones. T-Mobile lancera la 5G commerciale au second semestre 2019 et devrait avoir une couverture nationale en 2020.</p>
     −
<p class="highlighted mw-collapsible-content">Sprint et T-Mobile ont investi dans la 5G basse fréquence, qui offre des vitesses plus lentes, mais une autonomie accrue. Les deux entreprises pourront ainsi offrir la 5G dans des zones moins denses à moindre coût. Sprint a investi dans la bande centrale, la 5G 2,5 GHz, tandis que T-Mobile compte utiliser la 4G de bande basse 600 MHz en plus de la 5G haute fréquence dans les zones plus denses. En comparaison, Verizon et AT&T utiliseront principalement des bandes de fréquences beaucoup plus élevées, comme la bande des 28 GHz.</p><p class="highlighted mw-collapsible-content">
+
  <p> 5G is also poised to transform the world of IoT devices. The use of mmWave and 5G core network not only allow for faster data transmission but also greater connection reliability. This means greater connectivity for new kinds of mobile applications, factory automation, autonomous vehicles and so forth. Essentially any IoT application currently using Low Power Wide Area (LPWA) will see incremental improvements. Many cellular vendors are set to release smartphones and other devices capable of connecting to 5G networks by the end of 2019. Currently, organizations such as AT&T have released 5G Evolution, which is a step up from 4G LTE but does not provide the full range of capabilities that 5G will.</p>
Au Canada, la 5G ne sera pas offerte à grande échelle avant 2020. Bien que la 5G ait le potentiel d’atteindre des vitesses de 20 Gb/s, elle ne sera probablement qu’à 6 Gb/s à son premier déploiement. Comme pour les technologies similaires, il faudra jusqu’à 10 ans pour que la nouvelle technologie atteigne sa pleine maturité.</p>
  −
<p>L’une des utilités de la 5G est la gestion des sources d’énergies renouvelables comme l’énergie solaire et éolienne en compensation de la consommation d’énergie électrique. Étant donné que la 5G permettra la collecte de données, il sera possible de l’analyser pour déterminer les moments de forte et de faible consommation d’électricité. L’information servira ensuite à planifier un réseau électrique plus cohérent et plus fiable.</p>
     −
<p>La rapidité des réseaux 5G et leur faible latence inhérente rendront également possible la chirurgie à distance. Les habitants des milieux ruraux auront ainsi accès à des chirurgiens et à des spécialistes qui ne pratiquent habituellement que dans les grandes villes. La première chirurgie à distance réussie a déjà été réalisée en Chine. Le réseau 5G est la pièce manquante au casse-tête de la chirurgie à distance. Pour réussir, une chirurgie à distance a besoin d’un patient, d’un chirurgien, d’un robot et d’une connexion Internet stable et ultrarapide.</p>
+
  <h2>Technology Brief</h2>
<p>Que se passerait-il si les voitures autonomes pouvaient signaler leurs intentions ou diffuser leur itinéraire à d’autres voitures autonomes? La 5G pourrait en faire une réalité et contribuerait ainsi à rendre les routes plus sûres. Les conducteurs pourraient aussi montrer aux autres à proximité dans quelle direction ils vont. La chose pourrait se faire lorsque nous utilisons nos téléphones pour trouver le chemin à emprunter pour parvenir à notre destination. Le téléphone pourrait également diffuser ces informations par la 5G jusqu’aux téléphones et aux voitures autonomes à proximité.</p>
     −
<h2>Utilisation par le gouvernement du Canada</h2>
+
  <p>Much like current cellular networks, 5G divides a territory into small sectors in which devices connect to cell sites. These cell sites are then able to transmit encrypted data through the use of radio waves. Where 5G differs from its predecessor is in its ability to transmit these radio waves at much higher frequencies – which translates into faster data speeds, even faster than current fibre network speeds, which are 1Gbps. This minimal disruption has already seen real world application when Sprint released a similar feature with its LAA technology. In the millimeter wave (mmWave) spectrum, these frequencies are between 30 and 300 GHz.</p>
<p class="highlighted mw-collapsible-content">Les réseaux mobiles 5G (ou de 5e génération) ne sont pas encore accessibles au Canada ni dans la plupart des pays du monde d’ailleurs. Malgré tout, le gouvernement du Canada s’est préparé à son arrivée. Le Canada est au même point que les autres pays développés dans la préparation à la 5G.</p>
+
<p>There are two sets of frequencies being approved by the United States’ Federal Communications Commission (FCC). “Low-band 5G” and “Mid-band 5G” use frequencies from 600 MHz to 6 GHz, especially 3.5-4.2 GHz. Mid-Band waves will likely not affect existing wireless support hardware very much. Although there will be a need for boosters to avoid a lot of signal attenuation, mmWave will completely disrupt wireless technologies – requiring a whole new system of antennas, cabling, and amplifiers.</p>
<b><u>Innovation, Sciences et Développement économique Canada (ISDE) et gestion du spectre mobile</u></b>
+
<p>5G networks will be used with much smaller cell sites. Higher frequency radio waves are only capable of travelling short distances as compared to the lower frequency 4G LTE waves. Since the 5G signal can only be transmitted about the distance of a city block and cannot permeate buildings, there will be less need for large network towers and more need for small cell towers approximately every city block as well as within buildings. This also means that the speed on the individual networks will be greater than before.</p><p class="inline">An article written by professors from the University of Waterloo, Carleton and Ozyegin Universities explains that 5G networks could completely transform the current cellular architecture. They explain that for 5G to function with such a high demand for network bandwidth from IoT devices, the traditional cellular architecture may be divided into a two-tier architecture: 1) a macrocell layer, for base station-to-device communication, and 2) a device layer, for device-to-device (D2D) communication.</p> <p class="expand inline mw-collapsible-content">. However, this poses risks for security. D2D communication requires more complex network security than what is currently available. Communication is possible through the use of device relaying; connected devices use one another to retransmit data, creating an ad hoc mesh network. In this way, the devices can communicate with one another in a licensed cellular bandwidth without the use of a base station (BS). This capability is a dramatic shift from conventional cellular architecture where cell phones connect to a cell tower.</p>
 
+
  <p class="expand mw-collapsible-content">Previously, D2D communication has only been used minimally. Recently, demand for this capability has grown as more context-aware applications come to market. These applications generally require both location services and the ability to communicate with other devices. Providing this capability through D2D would offer cost savings since not all devices on the network would need to be connected through the BS. D2D could also play a role in mobile cloud computing and enable more effective sharing of resources. If a device is at the edge of a cell site or in a crowded area, D2D could eliminate a significant resource burden on the BS.</p>
<p>La demande d’applications et de contenu numériques continue d’augmenter, tant au Canada qu’à l’étranger, ce qui constitue le principal moteur de l’essor de la technologie 5G. Les téléphones intelligents et autres appareils cellulaires de même que les tablettes, les appareils informatiques personnels (Internet des objets) et la connectivité entre machines jouent un rôle de plus en plus crucial dans la vie quotidienne des entreprises et citoyens canadiens. Dans un contexte de hausse de l’utilisation de ces appareils, le taux de croissance composé du trafic de données mobiles a été calculé à 54 % par an. En tant que telle, la création de spectres ou la conversion de spectres existants (ou de radiofréquences qu’empruntent les données mobiles) par les organismes de réglementation nationaux est cruciale si on veut répondre à la demande et éviter tout effet nuisible sur l’économie.</p>
+
  <h2>Industry Usage</h2>
<p class="highlighted mw-collapsible-content">Tout le spectre radioélectrique mondial est attribué par l’Union internationale des télécommunications (UIT). Au Canada, les téléphones cellulaires et les radiofréquences sont réglementés par Innovation, Sciences et Développement économique Canada (ISDE), qui fait partie de l’UIT. Ce ministère supervise également la délivrance des licences et l’installation des tours de téléphonie cellulaire, effectue des évaluations de l’impact environnemental et de l’utilisation du sol pour les projets d’installation de telles tours ou d’autres infrastructures de téléphonie cellulaire et veille à ce que l’équipement satisfasse à toutes les exigences réglementaires. Il est également responsable de l’attribution de licences d’utilisation du spectre aux entreprises de télécommunications sans fil au Canada. En 2015, après avoir consulté les entreprises de télécommunications et les télédiffuseurs, il a été décidé que le Canada utiliserait à nouveau la portion de 600 MHz du spectre de télévision pour les services mobiles. La mise aux enchères de ce spectre aux entreprises de télécommunications mobiles s’est achevée en avril 2019 et montre que le gouvernement du Canada est conscient de l’importance sans cesse croissante de la technologie mobile et de la nécessité d’élargir les bandes de fréquences.
+
  <p>Several telecom vendors in the U.S. have begun developing and testing 5G networks. Telecom providers like Verizon, AT&T and Sprint have all made strides in this field, with individual research projects underway to test the networks. Verizon, AT&T, Sprint, and T-Mobile have all begun to deploy 5G in various markets and will continue to do so throughout 2019. Verizon has fixed and mobile 5G in a few areas. AT&T has mobile 5G for select businesses in select cities, as Sprint is deploying 5G to select areas. T-Mobile will launch commercial 5G in the second half of 2019 and is expecting to have nationwide coverage in 2020.</p>
 +
<p class="expand mw-collapsible-content">Sprint and T-Mobile have invested in lower-frequency 5G, which provides slower speeds in exchange for more range. This will allow them to provide 5G to less-dense areas more economically. Sprint has invested in mid-band, 2.5 GHz 5G, while T-Mobile is planning to use “low-band” 600 MHz 4G in addition to higher-frequency 5G in denser areas. In comparison, Verizon and AT&T will mostly be using much higher-frequency bands, such as the 28-GHz range.</p>
 +
 +
<p class="expand mw-collapsible-content">In Canada, widespread availability of 5G won’t be until sometime in 2020. Although 5G has a potential of reaching speeds of 20Gbps, it will likely be around 6Gbps when it is first deployed. As with similar technologies, it will take up to 10 years for this new technology to reach full maturity.</p>
 +
 +
<p>One of the uses of 5G is to help manage solar, wind, and other renewable energy sources by balancing out power consumption. Since 5G will enable the collection of data, this information can be collected and analyzed to determine power consumption peaks and valleys. This information can then be used to plan a more consistent and dependable power grid.</p>
 +
<p>The fast speed of 5G networks and its inherent low latency will also enable remote surgery. This gives people in smaller communities’ access to surgeons and specialists that are normally only available in larger cities. The first successful remote surgery has already been completed in China. A 5G network adds the missing piece to the remote surgery puzzle. A remote surgery needs a patient, surgeon, robot, and a super-fast, stable internet connection.</p>
 +
<p>What if self-driving cars could signal their intentions or broadcast their route to other self-driving cars? 5G could enable this to happen and it would help make the roads safer. It could also be possible for the rest of us to broadcast to nearby drivers where we are going. This could be done when we are using our phones to give us directions to our destination. The phone could also broadcast this info via 5G to nearby phones and self-driving cars.</p>
 +
  <h2>Canadian Government Use</h2>
 +
  <p class="expand mw-collapsible-content">5G (or 5th Generation) mobile networks are not yet available in Canada or most of the world for that matter. Despite this, the Government of Canada (GC) has been preparing for its arrival. Canada is on par in preparation for 5G compared to other developed countries.</p>
 +
  <p><b><u>Innovation, Science and Economic Development Canada (ISED) & the Management of Mobile Spectrum</u></b></p>
 +
  <p>The demand for digital applications and content continues to rise, both in Canada and around the world, which is the main driving force for the ushering in of 5G technology. Smartphones and other cellular devices, along with tablets, personal computing devices (i.e. Internet of Things, or IoT) and machine-to-machine connectivity, are increasingly pivotal in the daily lives of Canadians and Canadian business. As use of such devices grows, the compound growth rate of mobile data traffic has been calculated at 54% annually. As such, the creation of new or conversion of existing spectrum (or radio frequencies upon which mobile data travels) by national regulators is crucial in order to meet demand to prevent any negative economic consequences.</p>
 +
  <p class="expand mw-collapsible-content">All global radio spectrum is allocated by The International Telecommunication Union (ITU). In Canada, cell phones and radio frequencies are regulated by Innovation, Science, and Economic Development (ISED), which forms part of the ITU. This department also oversees licensing and placement of cell phone towers, conducts environmental impact and land use assessments regarding the installation of cell phone towers or other cell phone infrastructure, and ensures that this equipment meets all regulatory requirements. It is also responsible for the provision and licensing of spectrum to wireless carriers in Canada. In 2015, after consultations with telecommunications carriers and television broadcasters, it was decided that Canada will repurpose the 600 MHz portion of the TV spectrum band for mobile use. The auctioning of this spectrum to mobile carriers was completed in April 2019 and demonstrates the Government of Canada’s (GC) awareness of the constantly increasing importance of mobile technology and the need for greater frequency bands.
 
</p>
 
</p>
<p>Toutefois, avec l’arrivée de la 5G à l’horizon 2023, l’année où la plupart des opérateurs en Amérique du Nord ont l’intention de lancer la 5G à grande échelle, il faudra encore plus d’espace sur le spectre:</p>
+
  <p>However, with 5G looming on the 2023 horizon, the year that most carriers in North American intend to have 5G launched on a large scale, even more spectrum will be required:</p>
<p><i>“Il est essentiel d’avoir un nouveau spectre si on veut assurer le bon fonctionnement des services mobiles terrestres de la cinquième génération (5G). À l’échelle mondiale, on s’affaire sans relâche à déterminer les spectres qui conviendraient, notamment les bandes qui peuvent être utilisées dans le plus grand nombre de pays possible pour permettre l’itinérance mondiale et favoriser des économies d’échelle. Des travaux sont en cours dans le monde entier pour viser l’harmonisation du spectre à utiliser pour la 5G. Les services 5G devraient couvrir un large éventail d’applications”- 5G Americas
+
  <p><i>“New spectrum is critical for the success of fifth-generation (5G) terrestrial
 +
mobile service. Globally, there are significant on-going activities to identify
 +
suitable spectrum, including bands that can be used in as many countries
 +
as possible to enable global roaming and economies of scale. Various efforts
 +
around the world are underway to find harmonization around [the] spectrum to          be  used for 5G. The 5G services are expected to cover a wide range of applications.” 5G Americas
 
</i></p>
 
</i></p>
<p class="highlighted mw-collapsible-content">En juin 2017, ISDE a lancé des consultations concernant la libération future de fréquences supplémentaires, au-delà des 648 MHz actuellement utilisés. ISDE souhaitait se renseigner sur les quantités qui devraient être nécessaires ainsi que sur la nécessité d’éventuelles considérations politiques et réglementaires, à mesure que de nouveaux modèles commerciaux et de nouvelles applications réseau feraient leur arrivée. Divers intervenants ont pris part aux consultations et ont manifesté leur appui à la proposition du gouvernement du Canada concernant la libération des bandes de fréquences de 28 GHz, 37 à 40 GHz et 64 à 71 GHz. Le ministre d’ISDE, l’honorable Navdeep Bains, a déclaré qu’aucune décision définitive ne sera prise avant la conférence mondiale des radiocommunications à l’automne 2019 et que les consultations sur ces questions durent généralement deux ans. Toutefois, certains acteurs de premier plan aimeraient que ce processus s’accélère. Un représentant de Telus a eu ces mots : « Il faut prendre des mesures réglementaires immédiates et définitives pour que le Canada récolte les fruits de sa rapidité d’action dans la nouvelle économie numérique mondiale. »</p>
+
<p class="expand mw-collapsible-content">In June 2017, ISED launched consultations regarding the future release of additional spectrum, beyond the current used 648 MHz. ISED wanted to consider the quantities most likely required, as well as the need for possible policy and regulatory considerations, as new business models and network applications emerge. Various stakeholders took part in the consultations and showed support for the GC’s proposal for the release of 28GHz, 37 to 40GHz and 64 to 71GHz frequency bands. The Minister of ISED, the Honourable Navdeep Bains, has said that more conclusive decisions will not take place before the World Radiocommunication Conference in the Fall of 2019 and that consultations around such issues generally take two years. However, some major stakeholders would like to see the speed of this process increased. A representative from Telus has said, “Immediate and decisive regulatory action is required to allow Canada to reap early mover advantages in the new global digital economy.</p>
<b><u>Sécurité publique et inquiétudes par rapport à l’espionnage</u></b>
+
<b><u>Public Safety & Concerns Regarding Espionage</u></b>
<p class="highlighted mw-collapsible-content">En mai 2019, le gouvernement du Canada a entrepris une étude de la cybersécurité de la technologie 5G et des fournisseurs potentiels d’équipement. Actuellement, les principaux fournisseurs mondiaux sont Nokia, Ericsson, Samsung, Qualcomm et Huawei, cette dernière société ayant la situation la plus nébuleuse de toutes. En 2018, l’Australie, la Nouvelle-Zélande et les États-Unis ont tous interdit l’utilisation d’équipements de télécommunications Huawei dans leurs réseaux 5G par crainte que l’entreprise n’ait des liens avec le gouvernement chinois, qui pourrait potentiellement utiliser Huawei pour réaliser ses activités d’espionnage ou attaquer des infrastructures publiques essentielles au moyen d’un programme malveillant. Huawei a toujours nié avec véhémence ces allégations. Le Royaume-Uni a ordonné l’interdiction partielle de Huawei dans les composantes centrales de son réseau 5G. Les autres pays européens se sont jusqu’à présent abstenus de lui emboîter le pas.</p>
+
<p class="expand mw-collapsible-content">As of May 2019, the GC is conducting a cybersecurity review of 5G technology and potential equipment suppliers. Currently, the main suppliers globally include Nokia, Ericsson, Samsung, Qualcomm, and Huawei, with the greatest concerns involving the latter company. In 2018, Australia, New Zealand, and the United States all banned the use of Huawei telecom equipment in its 5G networks after concerns that the company had ties to the Chinese government, which could potentially use Huawei to help it perform espionage or to attack vital public infrastructure by the deployment of malicious code. Huawei has vehemently denied these allegations to date. The United Kingdom has ordered a partial ban of Huawei in the core of its 5G network. Other European countries have so far refrained from doing so.</p>
<p>Bien que ce soit normalement la responsabilité des entreprises canadiennes comme Bell, Rogers et Telus d’assurer la sécurité de leurs réseaux, le gouvernement du Canada a l’obligation de veiller à la sécurité publique, dont la cybersécurité est une composante. Le 1er mai 2019, selon le ministre de la Sécurité publique Ralph Goodale, le ministre responsable de la sécurité nationale et la  [https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/ntnl-cbr-scrt-strtg/index-en.aspx/ Stratégie nationale de cybersécurité du Canada], l’examen sur la sûreté de la 5G, qui comprend le rôle potentiel de Huawei, est en cours, et une décision finale est attendue d’ici l’automne 2019. Indépendamment de cette décision, les opérateurs et le gouvernement du Canada devront déployer des efforts pour assurer la sécurité des réseaux, comme c’est le cas pour la 4G LTE actuellement.</p>
+
<p>While it is normally the responsibility of Canadian carriers, like Bell, Rogers, and Telus, to ensure the security of their networks, the GC has an obligation towards public safety, of which cybersecurity is a part. As of May 1, 2019, according to Public Safety Minister Ralph Goodale, the minister responsible for national security and [https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/ntnl-cbr-scrt-strtg/index-en.aspx/ Canada’s National Cyber Security Strategy], the security review over 5G including Huawei’s potential role is ongoing and a final decision is expected by Fall 2019. Regardless of this decision, ongoing efforts will be needed by both carriers as well as the GC in terms of network security, similar to how it is with current 4G LTE.</p>
<b><u>Autres investissements et initiatives</u></b>
+
<b><u>Other Investments & Initiatives</u></b>
<p>Le 19 mars 2018, le gouvernement du Canada a annoncé l’octroi de fonds pour le projet du corridor d’essai 5G entre le Québec et l’Ontario. Cet octroi représente une étape dans l’adoption de la prochaine génération de technologie sans fil. Le gouvernement du Canada établit des partenariats avec divers acteurs privés en guise d’exemple de collaboration entre toutes les parties prenantes. La 5G exigera une énorme et coûteuse refonte de l’infrastructure et il faut en tenir compte. </p>
+
<p>On March 19, 2018 the GC announced its investment in the 5G test corridor between Quebec and Ontario. The investment in ENCQOR represents a step in the adoption of the next generation of wireless technology. The GC is partnering with several private industry partners and demonstrates an important example of collaboration among all stakeholders. 5G will demand a huge infrastructure overhaul that must be accounted for.</p>
 
  −
<p>L’Association canadienne des télécommunications sans fil a lancé le Conseil 5G Canada pour favoriser la collaboration dans les travaux de mise en place de la 5G. La date de sortie de la technologie est toujours prévue d’ici 2020. Le gouvernement du Canada devra encore se pencher sur la manière dont il prendra en charge les fréquences radioélectriques entre 600 et 3 500 MHz, qui sont nécessaires pour les réseaux 5G. Cette gamme de fréquences est cruciale, car la fréquence de 600 MHz est l’une des fréquences les plus élevées qui peuvent s’utiliser dans les régions rurales et éloignées du pays.</p>
  −
<p class="highlighted mw-collapsible-content">Le gouvernement canadien a annoncé un montant pouvant atteindre 40 millions de dollars pour financer la recherche de Nokia sur la technologie 5G au Canada. Nokia a lancé de multiples projets sur le routage des données dans les réseaux optiques ainsi que la création d’outils de cybersécurité qui protégeront les réseaux de télécommunications dans leur transition vers la 5G.</p>
  −
  <h2>Répercussions pour les agences gouvernementales</h2>
  −
 
  −
  <h3>Services partagés Canada (SPC)</h3>
  −
<p>SPC aura un rôle important à jouer pour que les ministères canadiens disposent des outils, de l’infrastructure et de l’architecture nécessaires au lancement à grande échelle de la 5G au cours des prochaines années. Ainsi, le déploiement de la 5G aura des répercussions majeures sur SPC. </p>
  −
  <h4>Proposition de valeur</h4>
  −
  <p class="highlighted mw-collapsible-content">Comme il est mentionné dans le sommaire opérationnel, la 5G offre trois avantages principaux par rapport au réseau 4G actuel : une vitesse accrue, une latence moindre et la possibilité de connecter beaucoup plus d’appareils à la fois. Concrètement, les réseaux 5G seront ainsi en mesure de fournir un meilleur accès à l’entreposage en nuage (et à l’informatique en périphérie) et d’exécuter des applications opérationnelles avec un délai de réponse en temps réel amélioré et auront le pouvoir d’exécuter virtuellement des tâches plus complexes. Ces avantages vont de pair avec la volonté d’avoir un gouvernement du Canada ouvert et d’augmenter le partage des données et la collaboration depuis n’importe quel appareil (y compris les appareils mobiles), comme l’indique le [https://www.canada.ca/en/government/system/digital-government/digital-operations-strategic-plan-2018-2022.html#ToC9_2/ Plan stratégique des opérations numériques de 2018 à 2022. ] </p>
  −
  <p>SPC a apporté des changements importants dans la modernisation des centres de données du gouvernement du Canada ainsi que dans l’offre de services infonuagiques, sur le plan du traitement et du stockage des données. Cependant, au fil de l’évolution technologique, l’informatique en périphérie viendra compléter ces deux modèles. D’ici 2022, plus de 50 % des données générées par l’entreprise seront créées et traitées à l’extérieur du centre de données ou du nuage, selon une recherche effectuée par Gartner. L’informatique en périphérie s’impose de plus en plus comme solution aux problèmes de latence entre machines. La 5G améliorera par sa nature même la bande passante et donc les problèmes de latence, ce qui permettra de prendre en charge une plus grande densité d’appareils, dont ceux en périphérie. Grâce à la 5G, les données atteindront leurs points terminaux (qu’il s’agisse d’un nuage ou d’un centre de données) plus rapidement et accéléreront ainsi le traitement et le stockage. </p>
  −
 
  −
  <h4>Difficultés</h4>
  −
  <p class="highlighted mw-collapsible-content">Premièrement, les appareils compatibles devront être redistribués aux fonctionnaires de partout au Canada. Les appareils actuels ne seront en effet pas compatibles avec les réseaux 5G, et les mises à jour automatiques ne seront pas possibles. Seuls les appareils compatibles avec la 5G peuvent être utilisés sur les réseaux 5G (ils peuvent également être utilisés sur les réseaux 4G). Toutefois, il ne sera probablement pas nécessaire de mettre les appareils à niveau tout de suite. Les premières instances de la 5G utiliseront les réseaux et l’équipement 4G et non des réseaux ou de l’équipement particuliers. Quoi qu’il en soit, le renouvellement complet de tous les appareils du gouvernement du Canada sur à peu près la même période sera un projet d’envergure sur le plan logistique et financier. Néanmoins, il faudra aller de l’avant si le gouvernement veut pouvoir continuer d’exploiter le numérique au profit de la population canadienne, l’un des principaux thèmes stratégiques énoncés dans le [https://www.canada.ca/en/government/system/digital-government/digital-operations-strategic-plan-2018-2022.html/ Plan stratégique des opérations numériques de 2018 à 2022] aussi décrit dans [http://www.clerk.gc.ca/local_grfx/bp2020/bp2020-eng.pdf/ Objectif 2020].</p>
  −
  <p class="highlighted mw-collapsible-content">Deuxièmement, la 5G fonctionnera en partie sur les ondes millimétriques, qui ont des fréquences comprises entre 30 et 300 GHz. Les ondes millimétriques ont généralement une faible portée et sont sensibles aux interférences et aux blocages causés par des objets tels que les bâtiments, les arbres, voire la pluie et les nuages. Il devient donc difficile d’avoir une bonne couverture pour les appareils. De plus, les interférences et les problèmes de portée peuvent nuire à la tenue de certaines activités, notamment les prévisions météorologiques, les initiatives SmartCities, les procédures médicales et les opérations militaires et policières. Pour contourner le problème, il faudra déployer de petites cellules, terme forgé décrivant l’utilisation de nombreuses petites antennes, petites tours et petits émetteurs dans une zone dense. La situation entraînera une modification considérable des structures de réseau actuelles et pourrait compliquer passablement les choses dans certaines régions éloignées ou rurales.</p>
  −
  <p>Enfin, pour terminer, l’arrivée de la 5G pourrait susciter des inquiétudes en matière de santé et de sécurité au travail chez les employés et les citoyens en général, par rapport à l’exposition accrue aux rayonnements en raison du nombre élevé d’antennes et de tours situées plus près du lieu de résidence et de travail des gens. Même avec la technologie 4G actuelle et les équipements de télécommunications existants, certains pensent que les appareils et leurs équipements représentent une menace pour la santé humaine. Cependant, aucune recherche n’a actuellement démontré de risque réel. Santé Canada a rédigé des lignes directrices sur l’exposition humaine sécuritaire aux radiofréquences. Les radiofréquences de la 5G sont bien en dessous de la gamme de sécurité de 300 GHz. </p>
  −
 
  −
  <h4>Considérations</h4>
  −
 
  −
  <p>C’est sur ses centres de données que les réseaux 5G auront le plus important effet pour SPC. La 5G promet de prendre en charge un trafic plus élevé sur le réseau à des vitesses plus élevées avec une faible latence. Il faut aussi en comprendre que les applications commenceront à être conçues pour les réseaux 5G. Le passage à la 5G ne changera rien aux tâches à accomplir pour les centres de données, sinon leur échelle. Les centres de données devront se décentraliser et suivre un modèle à deux ou trois niveaux afin de fournir un traitement à faible latence à la périphérie du réseau tout en maintenant un rôle central d’agrégation et de coordination des données. Ils devront aussi augmenter la bande passante, le pouvoir de traitement et le stockage. </p>
  −
  <p class="highlighted mw-collapsible-content">La 5G transformera également l’architecture cellulaire traditionnelle. Pour avoir une architecture à deux niveaux, comme l’explique le sommaire technologique, il faut accroître la sécurité. En effet, l’utilisation d’appareils pour se connecter les uns aux autres afin d’établir une connexion réseau fait en sorte qu’il n’y a pas qu’une seule station de base centrale à protéger. Dorénavant, le fournisseur devra également se protéger contre les appareils qui établissent eux-mêmes les connexions. La sécurité sera une question de première importance pour SPC à l’arrivée de la 5G, car tous les appareils de l’Internet des objets seront connectés. Le nombre accru d’appareils fait augmenter le trafic sur le réseau.</p>
  −
  <p class="highlighted mw-collapsible-content">Des entreprises comme Cisco et Ericsson ont commencé à utiliser des réseaux SDN et la virtualisation des fonctions réseau parce que ce sont des solutions flexibles qui peuvent prendre en charge dynamiquement un nombre élevé d’appareils. Les réseaux SDN découplent le matériel du logiciel, ce qui signifie que les tâches peuvent être effectuées dans le nuage ou dans des grappes de serveurs. La virtualisation des fonctions réseau, généralement utilisée en combinaison avec les réseaux SDN, transforme les fonctions réseau de manière à pouvoir être exécutée dans des machines virtuelles au lieu de dépendre du matériel. Il s’agit là d’options viables pour SPC à mesure que le Ministère migre vers le nuage à l’aube de l’ère 5G.</p>
  −
  <p>Les réseaux 5G ne sont pas qu’une simple évolution technologique : c’est une révolution. La 5G a le potentiel de modifier de fond en comble la façon dont les données sont transmises et traitées, et par qui (ou quoi). SPC devra s’informer sur le potentiel des réseaux 5G d’entreprise, à l’instar de nombreuses entreprises qui ont commencé des démarches en ce sens. En raison de certaines activités essentielles à la mission de divers ministères, comme la Défense nationale et la Gendarmerie royale du Canada, l’arrivée des réseaux 5G privés peut se révéler nécessaire si on veut transmettre des renseignements sensibles ou lorsque l’infrastructure et les réseaux publics ne sont pas fiables ou jugés sûrs. </p>
  −
  <p class="highlighted mw-collapsible-content">Malgré les avantages de la 5G, il y aura des coûts initiaux et financiers et humains. Non seulement la mise à jour et le déploiement de l’infrastructure et des appareils actuels seront nécessaires, mais la densification de l’infrastructure sera également inévitable avec la technologie 5G. En raison des difficultés liées aux distances de transmission et aux interférences, il peut devenir nécessaire de déployer de petites cellules (tours et antennes radio), éventuellement sur chaque bâtiment gouvernemental à la grandeur du pays. Les répercussions sur les budgets et la main-d’œuvre ne font aucun doute. </p>
  −
  <p class="highlighted mw-collapsible-content">Enfin, on pourra tirer des leçons de l’expérience des premiers qui adopteront la 5G. À l’heure actuelle, la technologie 5G est loin du stade de maturité et n’est pas encore déployée à grande échelle ailleurs dans le monde. Cependant, en avril 2019, la Corée du Sud est devenue le premier pays à adopter pleinement la 5G et devrait compter près d’un million d’utilisateurs d’ici la fin juin 2019. Dans les premiers mois qui ont suivi le lancement, les utilisateurs se sont plaints de la couverture et de la vitesse, principalement en raison du manque de stations de base (tours et antennes) en dehors des zones urbaines à forte densité de population. Les opérateurs ont réagi en installant de 3 000 à 4 000 nouvelles stations par semaine afin de répondre à la demande et de résoudre les problèmes. On voit ainsi l’importance d’avoir une bonne infrastructure en place avant l’arrivée de la technologie afin d’éviter la frustration des clients qui pourraient ainsi vouloir lui tourner le dos.</p>
      +
<p>CWTA has launched the 5G Canada Council to promote supportive collaboration as Canada establishes this new 5G ecosystem. The technology is still set to release by 2020.  The GC will still need to address how it will support radio frequencies between 600 and 3500 MHz, which are required for 5G networks. This range of frequencies is crucial as 600 MHz is one of the highest frequencies still able to reach individuals in more rural and remote regions of the country.</p>
 +
<p class="expand mw-collapsible-content">The Canadian Government has announced the investment of up to $40 million to support Nokia’s research on 5G technology in Canada. Nokia has launched multiple projects regarding data routing in optical networks, as well as the development of cybersecurity tools that will protect telecommunication networks as they move toward 5G.</p>
 +
  <h2>Implications for Government Agencies</h2>
 +
  <h3>Shared Services Canada (SSC)</h3>
 +
<p>SSC will have an important role to play in ensuring that the GC departments have the tools, infrastructure, and architecture available when 5G launches on a large scale in the next few years. Thus, the rollout of 5G will have major implications for SSC. </p>
 +
  <h4>Value Proposition</h4>
 +
  <p class="expand mw-collapsible-content">As mentioned in the Business Brief, 5G offers three main advantages over the current 4G network: greater speed, lower latency, and the ability to connect many more devices at once. In practical terms, this means that 5G networks will be able to provide better access to cloud storage (and edge computing), the ability to run enterprise applications with greater “real-time” response, and the power to run more complex tasks virtually. These advantages couple well with the GC’s ongoing commitment to open-government and greater data sharing and collaboration from any device (including mobile) as elaborated in the [https://www.canada.ca/en/government/system/digital-government/digital-operations-strategic-plan-2018-2022.html#ToC9_2/ Digital Operations Strategic Plan 2018-2022.] </p>
 +
  <p>SSC has made considerable shifts in the modernization of the GC data centres, as well as the brokerage of cloud services in terms of data processing and storage. However, as technology evolves, edge computing will provide a complement to these two models. “By 2022, more than 50% of enterprise-generated data will be created and processed outside of the data centre or cloud” according to Gartner research. Edge computing is advancing as a solution to latency issues from one machine to another. 5G will help to improve bandwidth, and therefore latency issues in its own right, thus being able to support a greater density of edge and other devices. 5G will also help enable data to get to their end points (whether cloud or data center) faster for processing and storage.</p>
 +
  <h4>Challenges</h4>
 +
<p class="expand mw-collapsible-content">First, compatible devices will need to be re-issued to all GC employees throughout Canada. Current devices will not be compatible with 5G networks nor will automatic updates be available. Only 5G compatible devices can be used on 5G networks (they can also be used on 4G networks). However, an immediate update will probably not be required. Initially, 5G launches will use 4G networks and equipment and not standalone. Regardless, a complete renewal of all GC devices over roughly the same time period will be a massive logistical and financial undertaking. Nonetheless, to maintain itself as a digitally-enabled government that can best serve Canadians, one of the main strategic themes outlined in the [https://www.canada.ca/en/government/system/digital-government/digital-operations-strategic-plan-2018-2022.html/ Digital Operations Strategic Plan 2018-2022] and also outlined in [http://www.clerk.gc.ca/local_grfx/bp2020/bp2020-eng.pdf/ Blueprint 2020], this investment will be critical.  </p>
 +
<p class="expand mw-collapsible-content">Second, 5G will in part be broadcast using millimeter waves, which have frequencies between 30 and 300 GHz. The problem with mmWaves is that they typically have poor range and are susceptible to interference and blockage by objects, such as buildings, trees, even rain and clouds. This presents an obstacle in terms of ensuring adequate device coverage. Moreover, interference and range problems can prevent certain vital systems from working at all, such as weather forecasting, SmartCities initiatives, medical procedures, and military and policing operations. To get around this, “small cells”, the term devised to describe the use of many small antennas, towers, and transmitters in a dense area, will need to be deployed. This will significantly alter the current network structures that we have now and may prove difficult in some remote or rural areas.</p>
 +
<p>Lastly, the arrival of 5G may bring about occupational health & safety concerns from employees and citizens in general regarding radiation exposure from the increased number of antennas and towers in closer proximity to where people live and work. Even with current 4G technology and existing telecommunications equipment, there are some who believe that devices and their equipment pose a threat to human health. However, no research has currently shown a definitive risk. Health Canada has developed guidelines for safe human exposure to radiofrequency (RF) energy. 5G RF is well-below the high end safety range of 300 GHz. </p>
 +
  <h4>Considerations</h4>
 +
  <p>The largest impact 5G networks will have on SSC is in its datacenters. 5G promises to support higher network traffic at greater speeds with lower latency. It also means that applications will begin to be designed to use 5G networks. The shift to 5G will still require data centers to perform many of the same tasks except on a much larger scale. Datacenters will need to become decentralized and follow a two and/or three tier model to provide low latency processing at the edge of the network while maintaining a central data aggregation and coordination role. Datacenters will also require an increase in bandwidth, processing power and storage. </p>
 +
  <p class="expand mw-collapsible-content">5G will also transform the traditional cellular architecture. Having a two-tier architecture as explained in the technological brief requires heightened security. This is because using devices to connect to each other to establish a network connection means there isn’t only one central base station to protect. Now, the provider will have to also focus on protecting against the devices that establish the connections themselves. Security will be a vital concern for SSC moving into the 5G era as IoT devices will all be connected. This increased number of IoT devices brings forth a high amount of network traffic.</p>
 +
  <p class="expand mw-collapsible-content">Companies like Cisco and Ericsson have begun using software-defined-networks (SDNs) and network functions virtualization (NFV) because they are more flexible and can dynamically support a growing number of devices. SDNs decouples the hardware from the software, meaning tasks can be performed in the cloud or in clusters of servers. NFVs, which are usually used in combination with SDNs, shift network functions from being hardware-specific to being able to run in virtual machines. These are viable options for SSC moving forward as the department migrates to the cloud while entering the 5G era.</p>
 +
  <p>5G networks are considered not simply an evolution in technology, but a revolution. It has the potential to significantly alter the way data is transmitted, processed, and by whom (or what). It may be necessary for SSC to investigate the potential of enterprise 5G networks, as many large business enterprises have begun. Due to certain “mission critical” operations performed by various government departments, such as National Defence and the Royal Canadian Mounted Police (RCMP) amongst others, the development of private 5G networks may be necessary for the sharing of sensitive information or when public infrastructure and networks may not be reliable or deemed secure. </p>
 +
  <p class="expand mw-collapsible-content">Despite the advantages of 5G, there will be initial upfront financial and human resources costs. Not only will updating and deployment of current infrastructure and devices be required, but densification of infrastructure will also be an inevitable result of 5G technology. Due to the challenges in transmission distances and interference, small cell deployments of radio towers and antennas, possibly on each government building throughout the country, may be necessary. This has impacts on budgets and manpower. </p>
 +
  <p class="expand mw-collapsible-content">Finally, lessons can be learned from the early 5G adopters. At present, 5G technology is still very much immature and not deployed on a wide scale globally. However, in April 2019, South Korea became the first country to fully adopt 5G and expect close to 1 million users by the end of June 2019. Within these early months of its launch, complaints arose from users regarding coverage issues and speed, mostly as a result of a lack of base stations (towers and antennas) outside of densely populated urban areas. Carriers have responded by installing 3,000-4,000 new stations weekly in order to meet the demand and resolve issues. This highlights the importance of needing key infrastructure in place prior to launch in order to prevent the alienation and frustration of clients.</p>
 
   <h2>References</h2>
 
   <h2>References</h2>
   
   <div style= "display:none"><ref>Cheng, Roger "What is 5G? Here are the basics", cnet, 9 February 2018.<i>https://www.cnet.com/how-to/5g-network-technology-here-are-the-basics/</i></ref>
 
   <div style= "display:none"><ref>Cheng, Roger "What is 5G? Here are the basics", cnet, 9 February 2018.<i>https://www.cnet.com/how-to/5g-network-technology-here-are-the-basics/</i></ref>
 
   <ref>M. N. Tehrani, M. Uysal and H. Yanikomeroglu, "Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions," in IEEE Communications Magazine, vol. 52, no. 5, pp. 86-92, May <i>http://ieeexplore.ieee.org/abstract/document/6815897/</i></ref>
 
   <ref>M. N. Tehrani, M. Uysal and H. Yanikomeroglu, "Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions," in IEEE Communications Magazine, vol. 52, no. 5, pp. 86-92, May <i>http://ieeexplore.ieee.org/abstract/document/6815897/</i></ref>
Line 163: Line 158:  
   <ref>Nordrum, Amy, Kristen Clark and IEEE Spectrum Staff, “Everything You Need to Know About 5G”, Jan 2017.<i>https://spectrum.ieee.org/video/telecom/wireless/everything-you-need-to-know-about-5g</i></ref>
 
   <ref>Nordrum, Amy, Kristen Clark and IEEE Spectrum Staff, “Everything You Need to Know About 5G”, Jan 2017.<i>https://spectrum.ieee.org/video/telecom/wireless/everything-you-need-to-know-about-5g</i></ref>
 
   <ref>Health Canada, Government of Canada, “Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz - Safety Code 6 (2015)”, 2015<i>https://www.canada.ca/en/health-canada/services/environmental-workplace-health/consultations/limits-human-exposure-radiofrequency-electromagnetic-energy-frequency-range-3-300.html15</i></ref>
 
   <ref>Health Canada, Government of Canada, “Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz - Safety Code 6 (2015)”, 2015<i>https://www.canada.ca/en/health-canada/services/environmental-workplace-health/consultations/limits-human-exposure-radiofrequency-electromagnetic-energy-frequency-range-3-300.html15</i></ref>
   
  </div>
 
  </div>
 
</div>
 
</div>
    
{{#css:
 
{{#css:
 +
 +
  div>a>img {
 +
    width: 100%;
 +
    height: auto;
 +
  }
    
   #firstHeading::after{
 
   #firstHeading::after{
   content:"Réseaux 5G";
+
   content:"5G Networks";
 
   }
 
   }
   Line 186: Line 185:  
   .breadcrumb-table{  margin: auto; }
 
   .breadcrumb-table{  margin: auto; }
   −
   .highlighted{  background-color: rgba(242, 109, 33, 0.2); }
+
   .expand{  background-color: rgba(242, 109, 33, 0.2); }
 
   .mw-collapsible-text{ text-align:left;  }
 
   .mw-collapsible-text{ text-align:left;  }
 
   .inline{  display: inline; }
 
   .inline{  display: inline; }
Line 223: Line 222:  
   background-color: rgba(242, 109, 33, 1);
 
   background-color: rgba(242, 109, 33, 1);
 
     text-decoration: none;
 
     text-decoration: none;
 +
  }
 +
 +
  .hypecycle {
 +
    width: 80%;
 +
    margin: auto;
 +
  }
 +
 +
  .container{
 +
    width: 100%;
 +
    display: block;
 +
  }
 +
 +
  .row{
 +
    width: 100%;
 +
    display: table;
 +
  content: " ";
 +
  }
 +
 +
  .col-sm-8{
 +
    width: 66.6666666666%;
 +
    float:left;
 +
  }
 +
 +
  .col-sm-4{
 +
    width: 33.33333333333%;
 +
    float:left;
 +
  }
 +
 +
  .hypecycleTable{
 +
    width: 100%;
 
   }
 
   }
   Line 228: Line 257:  
   @media (max-width: 992px){
 
   @media (max-width: 992px){
 
     .sidetable{ width: 80%; margin-left: 10%; margin-right: 10%;}
 
     .sidetable{ width: 80%; margin-left: 10%; margin-right: 10%;}
 +
 +
    .container{
 +
      display: block;
 +
      clear: both;
 +
    }
 +
 +
    .col-sm-8,
 +
    .col-sm-6,
 +
    .col-sm-4{
 +
      display: block;
 +
      width: 100%;
 +
      clear: both;
 +
      margin: auto;
 +
    }
 
   }
 
   }
 
   @media (max-width: 600px){
 
   @media (max-width: 600px){

Navigation menu

GCwiki