Changes

Jump to navigation Jump to search
no edit summary
Line 23: Line 23:  
         </th>
 
         </th>
 
       </tr>
 
       </tr>
       <tr><td colspan="2" class="logo">[]</td></tr>
+
       <tr><td colspan="2" class="logo">Pending</td></tr>
 
       <tr>
 
       <tr>
 
         <th>Status</th>
 
         <th>Status</th>
Line 38: Line 38:  
       <tr>
 
       <tr>
 
         <th>Official publication</th>
 
         <th>Official publication</th>
         <td>[[Media:EN_-_Digital_Twins_v0.1_EN_Published.pdf|Digital Twins.pdf]]</td>
+
         <td>[[Media:EN_-_Technology_Trends_-_Digital_Twins.pdf|Digital Twins.pdf]]</td>
 
       </tr>
 
       </tr>
 
       <tr><td colspan="2" class="disclaimer"><table><tr>
 
       <tr><td colspan="2" class="disclaimer"><table><tr>
Line 47: Line 47:  
   </div>
 
   </div>
   −
   <br><p><b>A Digital Twin</b> can be defined as a digital representation of a physical asset. This asset can include processes, people, places, systems and devices that can be used for a variety of reasons. When defining a Digital Twin, the first important point to note is the connection established between a physical model and its virtual counterpart. Secondly, with the progression of Internet of Things (IoT) devices, real time data can be collected about the state of the physical model and then fed to a digital model allowing it to adapt its own state and become an accurate representation of the other, given the proper functionality.</p>
+
   <br><p>A <b>Digital Twin</b> can be defined as a digital representation of a physical asset. This asset can include processes, people, places, systems and devices that can be used for a variety of reasons. When defining a Digital Twin, the first important point to note is the connection established between a physical model and its virtual counterpart. Secondly, with the progression of Internet of Things (IoT) devices, real time data can be collected about the state of the physical model and then fed to a digital model allowing it to adapt its own state and become an accurate representation of the other, given the proper functionality.</p>
    
   <div class="mw-collapsible-toggle btn" style="float: left; display: block;">
 
   <div class="mw-collapsible-toggle btn" style="float: left; display: block;">
Line 57: Line 57:  
   <p>A Digital Twin will often make use of technology such as artificial intelligence, machine learning, and software analytics. The data is acquired from multiple sources including humans, similar machines, large systems, as well as the environment it resides in. Digital Twins have the potential to completely change certain industries. For example, when designing an integrated solution architecture a Digital Twin can integrate data from cloud platforms as well as asset related applications. This creates a single source of data and analysis for every asset. </p>
 
   <p>A Digital Twin will often make use of technology such as artificial intelligence, machine learning, and software analytics. The data is acquired from multiple sources including humans, similar machines, large systems, as well as the environment it resides in. Digital Twins have the potential to completely change certain industries. For example, when designing an integrated solution architecture a Digital Twin can integrate data from cloud platforms as well as asset related applications. This creates a single source of data and analysis for every asset. </p>
 
   <p class="inline" >Since real-time data provided through IoT sensors is integrated by a Digital Twin, a variety of use cases exist for their application. An organization can apply the technology to their sell-able products turning them into connected products where they are able to perform Product-Life-Cycle-Management from the design phase to the service provided to the customer <ref>Impact of the digital twin on the enterprise architecture. (n.d.). Retrieved from <i>[ https://blogs.sap.com/2018/09/04/impact-of-the-digital-twin-on-the-enterprise-architecture/]</i></ref>. Manufacturers can also benefit by connecting their end to end processes within a production Digital Twins can provide the capability to offer new product-as-a-service business models. </p><p class="expand inline mw-collapsible-content">Doing so also allows a Digital Twin to transition from being a data-driven simulation model to a tool for financial accounting and planning. In the context of Enterprise Architecture an architect can create an EA blueprint as a Digital Twin for the organization.</p>
 
   <p class="inline" >Since real-time data provided through IoT sensors is integrated by a Digital Twin, a variety of use cases exist for their application. An organization can apply the technology to their sell-able products turning them into connected products where they are able to perform Product-Life-Cycle-Management from the design phase to the service provided to the customer <ref>Impact of the digital twin on the enterprise architecture. (n.d.). Retrieved from <i>[ https://blogs.sap.com/2018/09/04/impact-of-the-digital-twin-on-the-enterprise-architecture/]</i></ref>. Manufacturers can also benefit by connecting their end to end processes within a production Digital Twins can provide the capability to offer new product-as-a-service business models. </p><p class="expand inline mw-collapsible-content">Doing so also allows a Digital Twin to transition from being a data-driven simulation model to a tool for financial accounting and planning. In the context of Enterprise Architecture an architect can create an EA blueprint as a Digital Twin for the organization.</p>
      
   <h2>Technology Brief</h2>
 
   <h2>Technology Brief</h2>
<p class="inline"></p>A Digital Twin can utilize a combination of Artificial Intelligence (AI) and Machine Learning (ML) to correctly represent current and future states of a physical asset Digital Twin. Developing a Digital Twin requires an information communication technology framework integrated with physical properties as well as software for data visualization. This means the twin requires the proper processing power for the data where trends and analysis can be represented or visualized on a dashboard. This can represent real world events as well as the characteristics of objects and processes <ref> https://blogs.sap.com/2018/09/04/impact-of-the-digital-twin-on-the-enterprise-architecture/<i>[https://www.designnews.com/electronics-test/steps-creating-digital-twin/34989275659708]</i></ref>. A Digital Twin can be thought of as a software module or a series of data sets that is logically distinct from an application using the twin. The application can then interact with the twin rather than the actual object. Gartner proclaims that the top practice for applications interacting with a twin is through a well-defined interface <ref>Gartner_Inc. (n.d.). Why and How to Design Digital Twins. Retrieved from <i>[https://www.gartner.com/en/documents/3888980/why-and-how-to-design-digital-twins]</i></ref>. This can be an event-based API or a request reply API. When public API methods or functions are invoked the twin’s logic can then perform a variety of actions including receiving data or generating alerts, or whatever functionality has been implemented based on system requirements. By using an API the twin’s data and logic is encapsulated and decoupled from the application’s logic, making the system loosely coupled. The API is exposed on the twin’s side, allowing the application to make calls to the lower level software modules that process the twin’s data.  This now means as long as the semantics of interface are maintained, either the twin or the application can be altered without harmful changes propagating through the entire system <ref>Gartner_Inc. (n.d.). Why and How to Design Digital Twins. Retrieved from <i>[https://www.gartner.com/en/documents/3888980/why-and-how-to-design-digital-twins]</i></ref>. This also means that a twin can be shared and accessed by multiple applications.<p class="expand inline mw-collapsible-content"> There are several advantages to this including the avoidance of data duplication, a common operating picture of the state of an object, a reduction in the number of communication protocol stacks and network ports needed, and lastly security can be improved because all network traffic through the object can be redirected through the twin providing a single point of entry. </p>
+
  <p class="inline"></p>A Digital Twin can utilize a combination of Artificial Intelligence (AI) and Machine Learning (ML) to correctly represent current and future states of a physical asset Digital Twin. Developing a Digital Twin requires an information communication technology framework integrated with physical properties as well as software for data visualization. This means the twin requires the proper processing power for the data where trends and analysis can be represented or visualized on a dashboard. This can represent real world events as well as the characteristics of objects and processes <ref> https://blogs.sap.com/2018/09/04/impact-of-the-digital-twin-on-the-enterprise-architecture/<i>[https://www.designnews.com/electronics-test/steps-creating-digital-twin/34989275659708]</i></ref>. A Digital Twin can be thought of as a software module or a series of data sets that is logically distinct from an application using the twin. The application can then interact with the twin rather than the actual object. Gartner proclaims that the top practice for applications interacting with a twin is through a well-defined interface <ref>Gartner_Inc. (n.d.). Why and How to Design Digital Twins. Retrieved from <i>[https://www.gartner.com/en/documents/3888980/why-and-how-to-design-digital-twins]</i></ref>. This can be an event-based API or a request reply API. When public API methods or functions are invoked the twin’s logic can then perform a variety of actions including receiving data or generating alerts, or whatever functionality has been implemented based on system requirements. By using an API the twin’s data and logic is encapsulated and decoupled from the application’s logic, making the system loosely coupled. The API is exposed on the twin’s side, allowing the application to make calls to the lower level software modules that process the twin’s data.  This now means as long as the semantics of interface are maintained, either the twin or the application can be altered without harmful changes propagating through the entire system <ref>Gartner_Inc. (n.d.). Why and How to Design Digital Twins. Retrieved from <i>[https://www.gartner.com/en/documents/3888980/why-and-how-to-design-digital-twins]</i></ref>. This also means that a twin can be shared and accessed by multiple applications.<p class="expand inline mw-collapsible-content"> There are several advantages to this including the avoidance of data duplication, a common operating picture of the state of an object, a reduction in the number of communication protocol stacks and network ports needed, and lastly security can be improved because all network traffic through the object can be redirected through the twin providing a single point of entry. </p>
    
   <h2>Industry Usage</h2>
 
   <h2>Industry Usage</h2>
   −
<p class="inline">Several organizations have remarked the benefits of Digital Twins, and are now using them to monitor their physical assets, operation dynamics, and business processes. General electric is one of the largest firms currently making use of Digital Twins. The company had begun using the twins to analyse data collected from the wind turbines, oil rigs and air craft engines they produce. For example when using the twin on an aircraft engine the system will monitor the engine and all its sub-components during a flight. A real-time Digital Twin is then generated from the data transferred from the on-board sensors to the company’s datacenter <ref>Digital Twin. (n.d.). Retrieved from <i>[https://www.ge.com/digital/applications/digital-twin]</i></ref>. If a potential defect is detected they are able to determine precisely which part is causing the fault and have a replacement ready once the aircraft has landed. </p><p class="expand inline mw-collapsible-content"> The technology also has huge medical potential. A research collaboration between Stanford University and HPE called “The Living Heart” creates a 3D multiscale model of a heart <ref>Goh, D. E. (2018, July 09). How Digital Twins of the Human Body Can Advance Healthcare. Retrieved from<i>[https://www.hpe.com/us/en/newsroom/blog-post/2018/07/how-digital-twins-of-the-human-body-can-advance-healthcare.html]</i></ref>. From there circulation can monitored and medications are able to be virtually tested. Much like its use in aircraft engine maintenance automotive vendors are also noting the potential of Digital Twins. Volkswagen has begun using the technology to monitor their production process. They have also begun using the Digital Twin in combination with Augmented Reality via Microsoft HoloLens <ref>Volkswagen Inside. Retrieved 8 October 2018.<i>[http://inside.volkswagen.com/The-virtual-twin.html]</i></ref>. Engineers and designers are now able to modify the Digital Twin using gesture control and vocal commands.</p>
+
  <p class="inline">Several organizations have remarked the benefits of Digital Twins, and are now using them to monitor their physical assets, operation dynamics, and business processes. General electric is one of the largest firms currently making use of Digital Twins. The company had begun using the twins to analyse data collected from the wind turbines, oil rigs and air craft engines they produce. For example when using the twin on an aircraft engine the system will monitor the engine and all its sub-components during a flight. A real-time Digital Twin is then generated from the data transferred from the on-board sensors to the company’s datacenter <ref>Digital Twin. (n.d.). Retrieved from <i>[https://www.ge.com/digital/applications/digital-twin]</i></ref>. If a potential defect is detected they are able to determine precisely which part is causing the fault and have a replacement ready once the aircraft has landed. </p><p class="expand inline mw-collapsible-content"> The technology also has huge medical potential. A research collaboration between Stanford University and HPE called “The Living Heart” creates a 3D multiscale model of a heart <ref>Goh, D. E. (2018, July 09). How Digital Twins of the Human Body Can Advance Healthcare. Retrieved from<i>[https://www.hpe.com/us/en/newsroom/blog-post/2018/07/how-digital-twins-of-the-human-body-can-advance-healthcare.html]</i></ref>. From there circulation can monitored and medications are able to be virtually tested. Much like its use in aircraft engine maintenance automotive vendors are also noting the potential of Digital Twins. Volkswagen has begun using the technology to monitor their production process. They have also begun using the Digital Twin in combination with Augmented Reality via Microsoft HoloLens <ref>Volkswagen Inside. Retrieved 8 October 2018.<i>[http://inside.volkswagen.com/The-virtual-twin.html]</i></ref>. Engineers and designers are now able to modify the Digital Twin using gesture control and vocal commands.</p>
    
   <h2>Canadian Government Use</h2>
 
   <h2>Canadian Government Use</h2>
   −
<p>There is a significant lack of documented Government of Canada (GC) initiatives and programs promoting the current and future use of Digital Twin technology. As a GC strategic IT item, Digital Twin technology is absent from both the GC’s Digital Operations Strategic Plan: 2018-2022 and the GC Strategic Plan for Information Management and Information Technology 2017 to 2021<ref>Treasury Board of Canada Secretariat. (March 29th, 2019). Digital Operations Strategic Plan: 2018-2022. Government of Canada. Treasury Board of Canada Secretariat. ISBN: 978-0-660-29075-1. Retrieved 16-May-2019 from: <i>[https://www.canada.ca/en/government/system/digital-government/digital-operations-strategic-plan-2018-2022.html ]</i></ref>.  This may be due to the fact that the GC is currently grappling with the implementation of Cloud Services, and the majority of resources and efforts are occupied with implementation challenges, as well as security concerns related to the protection of the information of Canadians.</p>
+
  <p>There is a significant lack of documented Government of Canada (GC) initiatives and programs promoting the current and future use of Digital Twin technology. As a GC strategic IT item, Digital Twin technology is absent from both the GC’s Digital Operations Strategic Plan: 2018-2022 and the GC Strategic Plan for Information Management and Information Technology 2017 to 2021<ref>Treasury Board of Canada Secretariat. (March 29th, 2019). Digital Operations Strategic Plan: 2018-2022. Government of Canada. Treasury Board of Canada Secretariat. ISBN: 978-0-660-29075-1. Retrieved 16-May-2019 from: <i>[https://www.canada.ca/en/government/system/digital-government/digital-operations-strategic-plan-2018-2022.html ]</i></ref>.  This may be due to the fact that the GC is currently grappling with the implementation of Cloud Services, and the majority of resources and efforts are occupied with implementation challenges, as well as security concerns related to the protection of the information of Canadians.</p>
<p>Future in-depth interviews and research will need to be conducted within Shared Services Canada (SSC) and with client departments in order to ascertain the level of Digital Twin capabilities that are ongoing and planned for future implementation.</p>
+
  <p>Future in-depth interviews and research will need to be conducted within Shared Services Canada (SSC) and with client departments in order to ascertain the level of Digital Twin capabilities that are ongoing and planned for future implementation.</p>
 
      
   <h2>Implications for Government Agencies</h2>
 
   <h2>Implications for Government Agencies</h2>
Line 96: Line 94:  
<p>Application leaders, who are active participants in developing application strategies and challenging the status quo, in SSC must have a good understanding of the different types of Digital Twins and their relationship to each other. These leaders should have a good understanding of the three types of Digital Twin technology, when to use them, and their relationship to existing business applications. Digital Twins are used to increase situational awareness, to better understand and respond to a business resource’s changing state, and to apply these capabilities more broadly so as to drive improvements in commercial processes and other forms of business value. These leaders should experiment with Digital Twin pilots and low-scale initiatives in order to discover how SSC can use digital-twin-enhanced situational awareness to improve service and business applications. This approach will help to identify which approach for acquiring and integrating Digital Twins with existing applications will work best for SSC.</p>
 
<p>Application leaders, who are active participants in developing application strategies and challenging the status quo, in SSC must have a good understanding of the different types of Digital Twins and their relationship to each other. These leaders should have a good understanding of the three types of Digital Twin technology, when to use them, and their relationship to existing business applications. Digital Twins are used to increase situational awareness, to better understand and respond to a business resource’s changing state, and to apply these capabilities more broadly so as to drive improvements in commercial processes and other forms of business value. These leaders should experiment with Digital Twin pilots and low-scale initiatives in order to discover how SSC can use digital-twin-enhanced situational awareness to improve service and business applications. This approach will help to identify which approach for acquiring and integrating Digital Twins with existing applications will work best for SSC.</p>
 
<p class="expand mw-collapsible-content">Lastly, SSC may wish to consider evaluating the current Service Catalogue in order to determine where IoT can be leveraged to improve efficiencies, reduce costs, and reduce administrative burdens of existing services as well as how a new IoT service could be delivered on a consistent basis. Any new procurements of devices or platforms should have high market value and can be on-boarded easily onto the GC network.</p>
 
<p class="expand mw-collapsible-content">Lastly, SSC may wish to consider evaluating the current Service Catalogue in order to determine where IoT can be leveraged to improve efficiencies, reduce costs, and reduce administrative burdens of existing services as well as how a new IoT service could be delivered on a consistent basis. Any new procurements of devices or platforms should have high market value and can be on-boarded easily onto the GC network.</p>
  −
      
   <h2>References</h2>
 
   <h2>References</h2>

Navigation menu

GCwiki