Changes

Jump to navigation Jump to search
no edit summary
Line 68: Line 68:  
   <h2>Canadian Government Use</h2>
 
   <h2>Canadian Government Use</h2>
   −
<p>There is a significant lack of documented Government of Canada (GC) initiatives and programs promoting the current and future use of Digital Twin technology. As a GC strategic IT item, Digital Twin technology is absent from both the GC’s Digital Operations Strategic Plan: 2018-2022 and the GC Strategic Plan for Information Management and Information Technology 2017 to 2021.  This may be due to the fact that the GC is currently grappling with the implementation of Cloud Services, and the majority of resources and efforts are occupied with implementation challenges, as well as security concerns related to the protection of the information of Canadians.</p>
+
<p>There is a significant lack of documented Government of Canada (GC) initiatives and programs promoting the current and future use of Digital Twin technology. As a GC strategic IT item, Digital Twin technology is absent from both the GC’s Digital Operations Strategic Plan: 2018-2022 and the GC Strategic Plan for Information Management and Information Technology 2017 to 2021<ref>Treasury Board of Canada Secretariat. (March 29th, 2019). Digital Operations Strategic Plan: 2018-2022. Government of Canada. Treasury Board of Canada Secretariat. ISBN: 978-0-660-29075-1. Retrieved 16-May-2019 from: <i>[https://www.canada.ca/en/government/system/digital-government/digital-operations-strategic-plan-2018-2022.html ]</i></ref>.  This may be due to the fact that the GC is currently grappling with the implementation of Cloud Services, and the majority of resources and efforts are occupied with implementation challenges, as well as security concerns related to the protection of the information of Canadians.</p>
 
<p>Future in-depth interviews and research will need to be conducted within Shared Services Canada (SSC) and with client departments in order to ascertain the level of Digital Twin capabilities that are ongoing and planned for future implementation.</p>
 
<p>Future in-depth interviews and research will need to be conducted within Shared Services Canada (SSC) and with client departments in order to ascertain the level of Digital Twin capabilities that are ongoing and planned for future implementation.</p>
   Line 77: Line 77:  
   <p>The business value impact of Digital Twin is to help inform situational awareness of the IT ecosystem, improve GC asset management, drive business process improvements, and lead to overall better IT strategic decision making. Digital Twin technology is about modelling assets in a one-to-one relationship and evolving the blend between digital and physical across environments. Digital Twin technology drives consolidation access. Since Digital Twin is a proxy which provides an object with an Internet Protocol (IP) address it can clarify and identify specific objects/assets. This is extremely helpful when dealing with issues of asset scale and complexity.</p>
 
   <p>The business value impact of Digital Twin is to help inform situational awareness of the IT ecosystem, improve GC asset management, drive business process improvements, and lead to overall better IT strategic decision making. Digital Twin technology is about modelling assets in a one-to-one relationship and evolving the blend between digital and physical across environments. Digital Twin technology drives consolidation access. Since Digital Twin is a proxy which provides an object with an Internet Protocol (IP) address it can clarify and identify specific objects/assets. This is extremely helpful when dealing with issues of asset scale and complexity.</p>
 
   <p>Any GC department with physical assets can benefit from the use of Digital Twins. GC assets and materiel must be managed by departments in a manner that supports the cost-effective and efficient delivery of government programs. Digital Twin technology can make the management of IoT assets across the country easier. The Digital Twin is continuously updated, via sensors attached to the physical object, to mirror the current state of the physical object. </p>
 
   <p>Any GC department with physical assets can benefit from the use of Digital Twins. GC assets and materiel must be managed by departments in a manner that supports the cost-effective and efficient delivery of government programs. Digital Twin technology can make the management of IoT assets across the country easier. The Digital Twin is continuously updated, via sensors attached to the physical object, to mirror the current state of the physical object. </p>
   <p>Since Digital Twin is a model of the actual physical object, it can be easily interacted with by analysts to track asset status, simulate unique conditions, and perform what-if analysis to predict failures. The main purpose of a Digital Twin is to act as a proxy for its thing, so any application that needs data from the physical object deals directly with the proxy. Since Digital Twin is a piece of software, it can be programmed to encapsulate data so that changes can be made within the twin without affecting any connected applications, and vice versa.  Additionally, as a model, Digital Twin helps analysts understand, document, and explain the behavior of a specific machine or a collection of machines over a specified amount of time, improving asset management techniques.  </p>
+
   <p>Since Digital Twin is a model of the actual physical object, it can be easily interacted with by analysts to track asset status, simulate unique conditions, and perform what-if analysis to predict failures. The main purpose of a Digital Twin is to act as a proxy for its thing, so any application that needs data from the physical object deals directly with the proxy. Since Digital Twin is a piece of software, it can be programmed to encapsulate data so that changes can be made within the twin without affecting any connected applications, and vice versa <ref>Hippold, Sarah. (January 23rd, 2019). Application and business intelligence leaders can use Digital Twins to decrease complexity in their IoT ecosystems. Gartner Inc. 2019. Smarter with Gartner. Retrieved 16-May-2019 from: <i>[https://www.gartner.com/smarterwithgartner/how-digital-twins-simplify-the-iot/ ]</i></ref>.  Additionally, as a model, Digital Twin helps analysts understand, document, and explain the behavior of a specific machine or a collection of machines over a specified amount of time, improving asset management techniques<ref>Oracle. (2019). Developing Applications with Oracle Internet of Things Cloud Service: About the IoT Digital Twin Framework. Oracle. Copyright © 1994-2019, Oracle and/or its affiliates. Retrieved 16-May-2019 from: <i>[https://docs.oracle.com/en/cloud/paas/iot-cloud/iotgs/iot-digital-twin-framework.html ]</i></ref>.  </p>
   <p>Digital Twins can further increase an organization’s situational awareness by analysis of sensor IoT data and information. The rise of Digital Twin technology coincides with the rise of the IoT and AI/ML.  Future advances and investments in both IoT and AI/ML are expected and this continues to support the development of Digital Twin technology. Digital Twin technology is becoming increasingly beneficial because it possesses capabilities that decrease the complexity of IoT ecosystems by creating easy to work with digital models of a physical object. Although, Digital Twins vary greatly in their purposes and the amount of data they hold, they all follow the same principle, there is one twin per physical thing. This decreases complexity for network analysts and improves their situational awareness of the network by identifying crucial physical assets which require organizational monitoring and management. </p>
+
   <p>Digital Twins can further increase an organization’s situational awareness by analysis of sensor IoT data and information. The rise of Digital Twin technology coincides with the rise of the IoT and AI/ML<ref>Hippold, Sarah. (January 23rd, 2019). Application and business intelligence leaders can use Digital Twins to decrease complexity in their IoT ecosystems. Gartner Inc. 2019. Smarter with Gartner. Retrieved 16-May-2019 from: <i>[ https://www.gartner.com/smarterwithgartner/how-digital-twins-simplify-the-iot/]</i></ref>.  Future advances and investments in both IoT and AI/ML are expected and this continues to support the development of Digital Twin technology. Digital Twin technology is becoming increasingly beneficial because it possesses capabilities that decrease the complexity of IoT ecosystems by creating easy to work with digital models of a physical object. Although, Digital Twins vary greatly in their purposes and the amount of data they hold, they all follow the same principle, there is one twin per physical thing. This decreases complexity for network analysts and improves their situational awareness of the network by identifying crucial physical assets which require organizational monitoring and management. </p>
 
   <p>Digital Twin can also be leveraged to drive business process management. A contextualized model can be created by a Digital Twin for individual business processes or work processes. This allows an organization to identify parts of an organization that are directly providing enterprise value. For example, enterprise risk management is a complex process often involving multiple stakeholders, within an organization, a Digital Twin can be leveraged to create visibility on the dependencies within various aspects of this process.  A Digital Twin can provide accountability and governance as well as performance indicators and objectives. Making the entire process more visible and easily trackable <ref>Gartner_Inc. (n.d.). 12 Powerful Use Cases for Creating a Digital Twin of Your Organization. Retrieved from <i>[https://www.gartner.com/doc/3817018/-powerful-use-cases-creating]</i></ref>. When combining Digital Twin data with business rules, optimization algorithms or other prescriptive analytics technologies, Digital Twins can support human decisions or even automate decision making. </p>
 
   <p>Digital Twin can also be leveraged to drive business process management. A contextualized model can be created by a Digital Twin for individual business processes or work processes. This allows an organization to identify parts of an organization that are directly providing enterprise value. For example, enterprise risk management is a complex process often involving multiple stakeholders, within an organization, a Digital Twin can be leveraged to create visibility on the dependencies within various aspects of this process.  A Digital Twin can provide accountability and governance as well as performance indicators and objectives. Making the entire process more visible and easily trackable <ref>Gartner_Inc. (n.d.). 12 Powerful Use Cases for Creating a Digital Twin of Your Organization. Retrieved from <i>[https://www.gartner.com/doc/3817018/-powerful-use-cases-creating]</i></ref>. When combining Digital Twin data with business rules, optimization algorithms or other prescriptive analytics technologies, Digital Twins can support human decisions or even automate decision making. </p>
   <p>Lastly, improved situational awareness and asset management provided by Digital Twins can be used to help make better strategic business decisions. There are three types of Digital Twin with varying values to enterprise decision making, they are: Discrete, Composite and Digital Twin Organization, also known as Product, Production, and Performance.  Discrete/Product emphasizes monitoring physical objects (individual assets), Composite/Production emphasizes operations involving a combination of discrete/product Digital Twins and resources (things, people, and processes), and Digital Twins Organization/Performance emphasizes on monitoring processes across entire business operations (maximizing business processes).</p>
+
   <p>Lastly, improved situational awareness and asset management provided by Digital Twins can be used to help make better strategic business decisions. There are three types of Digital Twin with varying values to enterprise decision making, they are: Discrete, Composite and Digital Twin Organization, also known as Product, Production, and Performance<ref>Siemens. (2019). Digital Twin. Siemens Product Lifecycle Management Software Inc. 2019. Retrieved 16-May-2019 from: <i>[https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465]</i></ref>.  Discrete/Product emphasizes monitoring physical objects (individual assets), Composite/Production emphasizes operations involving a combination of discrete/product Digital Twins and resources (things, people, and processes), and Digital Twins Organization/Performance emphasizes on monitoring processes across entire business operations (maximizing business processes).</p>
 
   <h4>Challenges</h4>
 
   <h4>Challenges</h4>
 
   <p>There are many challenges that SSC could face in the development and deployment of Digital Twins in coordination with IoT devices. Most notable is the large amount of time, guidance, effort, resources, and funding required for establishing and maintaining Digital Twins and a robust GC IoT program that also has a high level of interoperability. Additional planning will be needed for SSC’s infrastructure to accommodate increased Digital Twin requirements.</p>
 
   <p>There are many challenges that SSC could face in the development and deployment of Digital Twins in coordination with IoT devices. Most notable is the large amount of time, guidance, effort, resources, and funding required for establishing and maintaining Digital Twins and a robust GC IoT program that also has a high level of interoperability. Additional planning will be needed for SSC’s infrastructure to accommodate increased Digital Twin requirements.</p>
Line 86: Line 86:  
   <p>Accompanying data processing issues is the challenge of interoperability. If crucial physical assets are being monitored using Digital Twin technology this requires a high level of availability and interoperability between the Digital Twin technology, the IoT, and the hosting infrastructure. This is very challenging given that the GC network is large, highly disparate, and has numerous legacy systems that were never designed to interoperate with each other. Integrating IoT-connected products can be a complicated task, and since Digital Twin is an intrinsic part of IoT the implementation of interoperable IoT is an intractable issue when discussing Digital Twin. In order to successfully implement a Digital Twin project it would require a significant number of sensors.  In a lot of cases this can be cost prohibitive. Additionally, managing the deployment of so many sensors is complex and time consuming. Hardware can also become a bottleneck within the IoT space since many vendors of sensors will require early prototypes of physical assets they are designing sensors for, to verify their design. A corporation making use of the IoT sensors to create their Digital Twin will be forced to purchase a significant number of sensors which can be expensive when the complexity of these sensors is high.</p>
 
   <p>Accompanying data processing issues is the challenge of interoperability. If crucial physical assets are being monitored using Digital Twin technology this requires a high level of availability and interoperability between the Digital Twin technology, the IoT, and the hosting infrastructure. This is very challenging given that the GC network is large, highly disparate, and has numerous legacy systems that were never designed to interoperate with each other. Integrating IoT-connected products can be a complicated task, and since Digital Twin is an intrinsic part of IoT the implementation of interoperable IoT is an intractable issue when discussing Digital Twin. In order to successfully implement a Digital Twin project it would require a significant number of sensors.  In a lot of cases this can be cost prohibitive. Additionally, managing the deployment of so many sensors is complex and time consuming. Hardware can also become a bottleneck within the IoT space since many vendors of sensors will require early prototypes of physical assets they are designing sensors for, to verify their design. A corporation making use of the IoT sensors to create their Digital Twin will be forced to purchase a significant number of sensors which can be expensive when the complexity of these sensors is high.</p>
 
   <p>Governance is also a major challenge as over 85% of Digital Twins are managed by multiple-stakeholders. This brings this issue of ownership and visualization access needs to the forefront of managing Digital Twins. There is the issue of who actually owns the Digital Twin and the data populating it. </p>
 
   <p>Governance is also a major challenge as over 85% of Digital Twins are managed by multiple-stakeholders. This brings this issue of ownership and visualization access needs to the forefront of managing Digital Twins. There is the issue of who actually owns the Digital Twin and the data populating it. </p>
   <p>Connectivity is another major challenge for many Digital Twin concepts. Most physical objects that are both vital and interesting to study from a Digital Twin perspective, do not remain stationary. Making sure a connection or network reception can be established all the time to a network is a challenge moving forward when the number of physical assets being tracked on an organizations network is large and in semi-continual motion. Most IoT architectural patterns currently rely on data caching on the edge and processing in the cloud models. However, the bandwidth required to gain value from a Digital Twin scenario that could potentially be processing billions of data points is a tremendous connectivity issue. </p>
+
   <p>Connectivity is another major challenge for many Digital Twin concepts. Most physical objects that are both vital and interesting to study from a Digital Twin perspective, do not remain stationary. Making sure a connection or network reception can be established all the time to a network is a challenge moving forward when the number of physical assets being tracked on an organizations network is large and in semi-continual motion. Most IoT architectural patterns currently rely on data caching on the edge and processing in the cloud models. However, the bandwidth required to gain value from a Digital Twin scenario that could potentially be processing billions of data points is a tremendous connectivity issue<ref>Goldberg, Stephen. (June 26th, 2018). The Promise & Challenges of Digital Twin. HarperDB. 3000 Lawrence St. Denver, CO 80205. Retrieved 16-May-2019 from: <i>[https://www.harperdb.io/blog/the-promise-challenges-of-digital-twin ]</i></ref>. </p>
   <p class="expand mw-collapsible-content">Another challenge in pursuing Digital Twins is the shifting of an enterprise’s business model. The enterprise must now place Digital Twins as a core component of their business model and this can be difficult with large organizations who are more susceptible to changes in their business model [7]. The Digital Twin can then be used to support strategy execution. However, leveraging a Digital Twin in this manner can only be done when it is provided with full visibility into business processes and performance and any interdependencies between them <ref>Gartner_Inc. (n.d.). 12 Powerful Use Cases for Creating a Digital Twin of Your Organization. Retrieved from <i>[https://www.gartner.com/doc/3817018/-powerful-use-cases-creating]</i></ref>.</p>
+
   <p class="expand mw-collapsible-content">Another challenge in pursuing Digital Twins is the shifting of an enterprise’s business model. The enterprise must now place Digital Twins as a core component of their business model and this can be difficult with large organizations who are more susceptible to changes in their business model <ref>The challenge of creating digital twins in the transition to Industry 4.0. (2017, July 27). Retrieved from<i>[Distruptive.asia: https://disruptive.asia/digital-twins-industry-4-0/]</i></ref>. The Digital Twin can then be used to support strategy execution. However, leveraging a Digital Twin in this manner can only be done when it is provided with full visibility into business processes and performance and any interdependencies between them <ref>Gartner_Inc. (n.d.). 12 Powerful Use Cases for Creating a Digital Twin of Your Organization. Retrieved from <i>[https://www.gartner.com/doc/3817018/-powerful-use-cases-creating]</i></ref>.</p>
    
   <h4>Considerations</h4>
 
   <h4>Considerations</h4>
<p>SSC should consider reviewing the IoT strategy to establish a vision for Digital Twins and their incorporation with IoT initiatives and services. Build Digital Twin Architecture starting with asset engagement with enterprise systems and expanding throughout the ecosystem.  A strategic approach to IoT investments will need to be developed to ensure accompanying Digital Twin opportunities are properly leveraged. The GC invests a significant portion of its annual budget on IT and supporting infrastructure. Without strategic IoT direction, the fragmented approaches to IT investments, coupled with rapid developing technology and disjointed business practices, can undermine effective and efficient delivery of GC programs and services.  A clear vision and mandate for how Digital Twin and IoT will transform services, and what the end-state Digital Twin initiative is supposed to look like, is a prominent consideration. Additionally, since the IoT is fast becoming a pervasive attribute in IT, many companies will likely need to combine IoT and Digital Twin processes. Organizations will need to ensure that any acquisition of IoT has Digital Twins as an embedded feature. Additionally, when updating IoT strategy, the physical assets themselves, and digital applications for improved IoT, Digital Twin should be an inherent consideration and component wherever IoT is concerned.</p>
+
<p>SSC should consider reviewing the IoT strategy to establish a vision for Digital Twins and their incorporation with IoT initiatives and services. Build Digital Twin Architecture starting with asset engagement with enterprise systems and expanding throughout the ecosystem.  A strategic approach to IoT investments will need to be developed to ensure accompanying Digital Twin opportunities are properly leveraged. The GC invests a significant portion of its annual budget on IT and supporting infrastructure. Without strategic IoT direction, the fragmented approaches to IT investments, coupled with rapid developing technology and disjointed business practices, can undermine effective and efficient delivery of GC programs and services<ref>Treasury Board of Canada Secretariat. December 3, 2018. Directive on Management of Information Technology. Treasury Board of Canada Secretariat. Government of Canada. Retrieved 27-Dec-2018 from: <i>[https://www.tbs-sct.gc.ca/pol/doc-eng.aspx?id=15249 ]</i></ref>.  A clear vision and mandate for how Digital Twin and IoT will transform services, and what the end-state Digital Twin initiative is supposed to look like, is a prominent consideration. Additionally, since the IoT is fast becoming a pervasive attribute in IT, many companies will likely need to combine IoT and Digital Twin processes. Organizations will need to ensure that any acquisition of IoT has Digital Twins as an embedded feature. Additionally, when updating IoT strategy, the physical assets themselves, and digital applications for improved IoT, Digital Twin should be an inherent consideration and component wherever IoT is concerned.</p>
<p>Enterprises like SSC should be cognisant of not flooding their ability to conduct business with massive amounts of data without properly planning for its analysis, simply due to a fear-of-missing-out. An IoT device on its own doesn’t understand what is happening around it, for this reason IoT devices and near/real-time analytics constitute a package. Organizations will often deploy IoT for a specific purpose in silos but fail to handle the new influx of data or fail to connect these devices with other systems for aggregate analysis. In order to achieve value from Digital Twin technology, projects need to adapt an intelligent edge architecture, a process where data is analyzed and aggregated in a spot close to where it is captured in a network.  Data needs to be analyzed and processed on the edge. The volumes of data needed to effectively analyze these scenarios can be too high to depend only on the cloud and data centers. Using the processing power of an outside provider like Microsoft Azure or Amazon AWS reduces the impact of these risks so long as the assets are of low enough security clearance where their data and processing can be accomplished through a cloud service provider. </p>
+
<p>Enterprises like SSC should be cognisant of not flooding their ability to conduct business with massive amounts of data without properly planning for its analysis, simply due to a fear-of-missing-out. An IoT device on its own doesn’t understand what is happening around it, for this reason IoT devices and near/real-time analytics constitute a package. Organizations will often deploy IoT for a specific purpose in silos but fail to handle the new influx of data or fail to connect these devices with other systems for aggregate analysis. In order to achieve value from Digital Twin technology, projects need to adapt an intelligent edge architecture, a process where data is analyzed and aggregated in a spot close to where it is captured in a network<ref>Techopedia. (2019). Intelligent Edge. Techopedia Inc. 2019. Retrieved 16-May-2019 from: <i>[https://www.techopedia.com/definition/32559/intelligent-edge  ]</i></ref>.  Data needs to be analyzed and processed on the edge. The volumes of data needed to effectively analyze these scenarios can be too high to depend only on the cloud and data centers. Using the processing power of an outside provider like Microsoft Azure or Amazon AWS reduces the impact of these risks so long as the assets are of low enough security clearance where their data and processing can be accomplished through a cloud service provider. </p>
<p>To add value, organizations should consider the Analytics of Things (AoT)  before creating sensors that stream enormous amounts of data to databases from the devices. This also means that decisions will need to be made on how much local processing the IoT device does, including what data to keep, what data to abbreviate or discard. Also when buying machines and other assets, support for Digital Twins and continuous development of twin capabilities should be a selection factor. </p>
+
<p>To add value, organizations should consider the Analytics of Things (AoT)<ref>The concept of AoT is the analysis of the data collected from IoT devices. Reference: Pal, Kaushik. (August 11, 2016). Analytics Of Things: Taking IoT to the Next Level. Techopedia Inc. Retrieved 22-Jan-2019 from<i>[https://www.techopedia.com/2/31958/trends/big-data/analytics-of-things-taking-iot-to-the-next-level]</i></ref> before creating sensors that stream enormous amounts of data to databases from the devices. This also means that decisions will need to be made on how much local processing the IoT device does, including what data to keep, what data to abbreviate or discard. Also when buying machines and other assets, support for Digital Twins and continuous development of twin capabilities should be a selection factor<ref>Hippold, Sarah. (January 23rd, 2019). Application and business intelligence leaders can use Digital Twins to decrease complexity in their IoT ecosystems. Gartner Inc. 2019. Smarter with Gartner. Retrieved 16-May-2019 from: <i>[https://www.gartner.com/smarterwithgartner/how-digital-twins-simplify-the-iot/]</i></ref>. </p>
 
<p>SSC should consider acquiring portfolios of IoT Digital Twins in order to standardize and streamline situational awareness of enterprise assets and components. Choosing a Digital Twin integration pattern and portfolio that best fits the business process or situation will help implement and integrate discrete and composite Digital Twins. Tracking and supporting industry standards may be required by SSC in the future. SSC may need to assess ongoing efforts by industry groups, such as the Digital Twin Interoperability Task Group of the Industrial Internet Consortium, that are in the early stages of considering standards and frameworks to support Digital Twin interoperability. While these industry groups are beginning to work on Digital Twin formats, protocols and other integration simplifying standards, the rapid pace of Digital Twin evolution is high-paced and should be closely monitored. </p>
 
<p>SSC should consider acquiring portfolios of IoT Digital Twins in order to standardize and streamline situational awareness of enterprise assets and components. Choosing a Digital Twin integration pattern and portfolio that best fits the business process or situation will help implement and integrate discrete and composite Digital Twins. Tracking and supporting industry standards may be required by SSC in the future. SSC may need to assess ongoing efforts by industry groups, such as the Digital Twin Interoperability Task Group of the Industrial Internet Consortium, that are in the early stages of considering standards and frameworks to support Digital Twin interoperability. While these industry groups are beginning to work on Digital Twin formats, protocols and other integration simplifying standards, the rapid pace of Digital Twin evolution is high-paced and should be closely monitored. </p>
 
<p>Application leaders, who are active participants in developing application strategies and challenging the status quo, in SSC must have a good understanding of the different types of Digital Twins and their relationship to each other. These leaders should have a good understanding of the three types of Digital Twin technology, when to use them, and their relationship to existing business applications. Digital Twins are used to increase situational awareness, to better understand and respond to a business resource’s changing state, and to apply these capabilities more broadly so as to drive improvements in commercial processes and other forms of business value. These leaders should experiment with Digital Twin pilots and low-scale initiatives in order to discover how SSC can use digital-twin-enhanced situational awareness to improve service and business applications. This approach will help to identify which approach for acquiring and integrating Digital Twins with existing applications will work best for SSC.</p>
 
<p>Application leaders, who are active participants in developing application strategies and challenging the status quo, in SSC must have a good understanding of the different types of Digital Twins and their relationship to each other. These leaders should have a good understanding of the three types of Digital Twin technology, when to use them, and their relationship to existing business applications. Digital Twins are used to increase situational awareness, to better understand and respond to a business resource’s changing state, and to apply these capabilities more broadly so as to drive improvements in commercial processes and other forms of business value. These leaders should experiment with Digital Twin pilots and low-scale initiatives in order to discover how SSC can use digital-twin-enhanced situational awareness to improve service and business applications. This approach will help to identify which approach for acquiring and integrating Digital Twins with existing applications will work best for SSC.</p>
Line 100: Line 100:     
   <h2>References</h2>
 
   <h2>References</h2>
   <div style= "display:none"><ref>Cheng, Roger "What is 5G? Here are the basics", cnet, 9 February 2018.<i>https://www.cnet.com/how-to/5g-network-technology-here-are-the-basics/</i></ref>
+
    
  <ref>M. N. Tehrani, M. Uysal and H. Yanikomeroglu, "Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions," in IEEE Communications Magazine, vol. 52, no. 5, pp. 86-92, May <i>http://ieeexplore.ieee.org/abstract/document/6815897/</i></ref>
  −
  <ref>Oliveira, Michael, “Canadian wireless providers mum as U.S. companies announce 5G launch dates”, The Canadian Press, April 2018. <i>https://www.theglobeandmail.com/business/article-canadian-wireless-providers-mum-as-us-companies-announce-5g-launch/</i></ref>
  −
  <ref>Pretz, Kathy, “5G: The Future of Communications Networks”, IEEE, 1 March 2017. <i>http://theinstitute.ieee.org/technology-topics/communications/5g-the-future-of-communications-networks</i></ref>
  −
  <ref>“5G spectrum guide – everything you need to know”, GSMA, 16 February 2018 <i>https://www.gsma.com/spectrum/5g-spectrum-guide/</i></ref>
  −
  <ref>Lavallee, Brian, “Data Centers to 5G: Bring It On!” Data Center Knowledge, 6 February 2018. <i>http://www.datacenterknowledge.com/industry-perspectives/data-centers-5g-bring-it</i></ref>
  −
  <ref>Williams, Kevin, “How 5G Will Usher In The Internet Of Power Delivery”, 21 June 2016 <i>https://www.forbes.com/sites/huawei/2016/06/21/how-5g-internet-will-change-the-way-we-generate-and-consume-power/#62c0aa608031</i></ref>
  −
  <ref>Cheng, Roger, “5G is finally starting to feel real”, 18 December 2018 <i>https://www.cnet.com/news/5g-is-finally-starting-to-feel-real/</i></ref>
  −
  <ref>Humphries, Matthew, “China Performs First 5G Remote Surgery”, 15 January 2019, <i>https://www.pcmag.com/news/365992/china-performs-first-5g-remote-surgery</i></ref>
  −
  <ref>Behar, Rose, “Everything you need to know about 5G in Canada”, 1 March 2019, <i>https://mobilesyrup.com/2018/03/01/everything-you-need-to-know-about-5g-canada/</i></ref>
  −
  <ref>CableFree “Introducing 5G Frequency Bands”<i>https://www.cablefree.net/wirelesstechnology/4glte/5g-frequency-bands-lte/</i></ref>
  −
  <ref>New York Intelligencer “5G is Going to Transform Smartphones – Eventually”, February 2019<i>http://nymag.com/intelligencer/2019/02/5g-is-going-to-transform-smartphones-eventually.html</i></ref>
  −
  <ref>ISED, Government of Canada, “Decision on Repurposing the 600 MHz Band”, August 2015<i>https://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf11049.html</i></ref>
  −
 
  −
  <ref>5G Americas, “5G Spectrum Recommendations”, April 2017.</ref>
  −
  <ref>ISED, Government of Canada, “Consultation on Releasing Millimetre Wave Spectrum to Support 5G”, June 2017.<i>https://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf11298.html</i></ref>
  −
  <ref>Behar, Rose, “Here’s Why mmWave is Crucial to Canada’s 5G Future”, MobileSyrup, Oct 2017.<i>https://mobilesyrup.com/2017/10/16/mmwave-spectrum-explainer/</i></ref>
  −
  <ref>Bryan-Low, Cassell,Colin Packham, David Lague, Steve Stecklow & Jack Stubbs, Reuters, “Hobbling Huawei: Inside the U.S. war on China’s tech giant”, May 2019.<i>https://www.reuters.com/investigates/special-report/huawei-usa-campaign/</i></ref>
  −
  <ref>Fife, Robert & Steven Chase, The Globe and Mail, “Goodale says decision on Huawei 5G network to come before election”, May 2019.<i>https://www.theglobeandmail.com/politics/article-goodale-says-decision-on-huawei-to-come-before-election/</i></ref>
  −
  <ref>Business Wire, “Ixia, a Keysight Business, Delivers Network Performance Monitoring and Visibility to Remote Sites and Edge Computing”, Feb 2019.<i>https://finance.yahoo.com/news/ixia-keysight-business-delivers-network-161500291.html</i></ref>
  −
  <ref>Nordrum, Amy, Kristen Clark and IEEE Spectrum Staff, “Everything You Need to Know About 5G”, Jan 2017.<i>https://spectrum.ieee.org/video/telecom/wireless/everything-you-need-to-know-about-5g</i></ref>
  −
  <ref>Health Canada, Government of Canada, “Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz - Safety Code 6 (2015)”, 2015<i>https://www.canada.ca/en/health-canada/services/environmental-workplace-health/consultations/limits-human-exposure-radiofrequency-electromagnetic-energy-frequency-range-3-300.html15</i></ref>
  −
 
  −
</div>
   
</div>
 
</div>
  
105

edits

Navigation menu

GCwiki