Changes

no edit summary
Line 37: Line 37:  
It is also important to note that the quality of the model flags is impacted by the depth of the scans being processed. The shallowest depths are the most difficult to handle as the greatest variations in the physical properties of the water occur near the surface. A breakdown of model performance by depth ranges can be seen in the figure on the right. The first 50 meters are quite challenging, resulting in a model accuracy of roughly 88.7%. While the scans beneath 500 meters are more regular, resulting in a model accuracy of roughly 94.1%.
 
It is also important to note that the quality of the model flags is impacted by the depth of the scans being processed. The shallowest depths are the most difficult to handle as the greatest variations in the physical properties of the water occur near the surface. A breakdown of model performance by depth ranges can be seen in the figure on the right. The first 50 meters are quite challenging, resulting in a model accuracy of roughly 88.7%. While the scans beneath 500 meters are more regular, resulting in a model accuracy of roughly 94.1%.
   −
Perfect model accuracy will never be obtainable as there is uncertainty in the decision-making even for oceanographers. There are many complex factors at play influencing the data that is ultimately recorded such as choppy water causing the scanning equipment to descend irregularly, winds and strong weather conditions causing mixing of waters near the surface, and currents causing mixing of waters under the surface. As the distinction between proper and corrupted scan data can be very difficult to identify under these conditions, the human decision-making process is not guaranteed to be perfect. This in fact highlights a potential area where the development of more mature AI models that can exploit additional information on these factors may have the potential to lead to automated approaches that could eventually augment the human decisions to reach higher overall accuracy.
+
Perfect model accuracy will never be obtainable as there is uncertainty in the decision-making even for oceanographers. There are many complex factors at play influencing the data that is ultimately recorded such as choppy water causing the scanning equipment to descend irregularly, winds and strong weather conditions causing mixing of waters near the surface, and currents causing mixing of waters under the surface. As the distinction between proper and corrupted scan data can be very difficult to identify under these conditions, the human decision-making process is not guaranteed to be perfect. This in fact highlights a potential area where the development of more mature AI models that can exploit additional information on these factors may have the potential to lead to automated approaches that could eventually augment the human decisions to a higher overall quality.
    
    
 
    
121

edits