Supported by the 2020 – 2021 Results Fund, a Proof of Concept (POC) was developed for a predictive model to find (dis-)similarities between in situ multidimensional profiles of oceanographic data of the Pacific Ocean. The in situ Conductivity-Temperature-Depth (CTD) profiles are classified using the profile classification model <ref name=":0">https://pyxpcm.readthedocs.io/en/latest/index.html</ref>. The ocean profile classification model allows to automatically assemble ocean profiles in clusters according to their vertical structure similarities. The geospatial properties of these clusters can be used to address a large variety of oceanographic problems, E.g. front detection, water mass identification, natural region contouring (gyres, eddies), reference profile selection for QC validation, etc. The vertical structure of these clusters furthermore provides a highly synthetic representation of large ocean areas that can be used for dimensionality reduction and coherent intercomparisons of ocean data (re)-analysis or simulations <ref name=":0" />. | Supported by the 2020 – 2021 Results Fund, a Proof of Concept (POC) was developed for a predictive model to find (dis-)similarities between in situ multidimensional profiles of oceanographic data of the Pacific Ocean. The in situ Conductivity-Temperature-Depth (CTD) profiles are classified using the profile classification model <ref name=":0">https://pyxpcm.readthedocs.io/en/latest/index.html</ref>. The ocean profile classification model allows to automatically assemble ocean profiles in clusters according to their vertical structure similarities. The geospatial properties of these clusters can be used to address a large variety of oceanographic problems, E.g. front detection, water mass identification, natural region contouring (gyres, eddies), reference profile selection for QC validation, etc. The vertical structure of these clusters furthermore provides a highly synthetic representation of large ocean areas that can be used for dimensionality reduction and coherent intercomparisons of ocean data (re)-analysis or simulations <ref name=":0" />. |