Difference between revisions of "Technology Trends/Datalakes"
Line 143: | Line 143: | ||
<p class="expand mw-collapsible-content">Data quality and trust in the data is a perennial issue for many organizations. Although data discovery tools can apply Machine Learning across related datasets from multiple data sources to identify anomalies (incorrect values, missing values, duplicates and outdated data), quality and trustworthiness of data continue to be an issue for Data Lakes who can easily become data dumping grounds. Some data is more accurate than others. This can present a real problem for anyone using multiple data sets and making decisions based upon analysis conducted with data of varying degrees of quality.</p> | <p class="expand mw-collapsible-content">Data quality and trust in the data is a perennial issue for many organizations. Although data discovery tools can apply Machine Learning across related datasets from multiple data sources to identify anomalies (incorrect values, missing values, duplicates and outdated data), quality and trustworthiness of data continue to be an issue for Data Lakes who can easily become data dumping grounds. Some data is more accurate than others. This can present a real problem for anyone using multiple data sets and making decisions based upon analysis conducted with data of varying degrees of quality.</p> | ||
<b>Data Swamps, Performance, and Flexibility Challenges</b> | <b>Data Swamps, Performance, and Flexibility Challenges</b> | ||
− | <p class="expand inline mw-collapsible-content">Data stored in Data Lakes can sometimes become muddy when good data is mixed with bad data. Data Lake infrastructure is meant to store and process large amounts of data, usually in massive data files. </p><p class="inline"> | + | <p class="expand inline mw-collapsible-content">Data stored in Data Lakes can sometimes become muddy when good data is mixed with bad data. Data Lake infrastructure is meant to store and process large amounts of data, usually in massive data files. </p><p class="inline">A Data Lake is not optimized for a high number of users or diverse and simultaneous workloads due to intensive query tasks. This can result in performance degradation and failures are common when running extractions, transformations, and loading tasks all at the same time. On-premises Data Lakes face other performance challenges in that they have a static configuration. </p> |
<b class="expand mw-collapsible-content">Data Hoarding and Storage Capacity</b> | <b class="expand mw-collapsible-content">Data Hoarding and Storage Capacity</b> | ||
<p class="expand mw-collapsible-content">Data stored in Data Lakes may actually never be used in production and stay unused indefinitely in the Data Lake. By storing massive amounts of historical data, the infinite Data Lake may skew analysis with data that is no longer relevant to the priorities of the business. In keeping the historical data the metadata describing it must be understood as well. This decreases the performance of the Data Lake by increasing the overall workload of employees to clean the datasets no longer in use for analysis.</p> | <p class="expand mw-collapsible-content">Data stored in Data Lakes may actually never be used in production and stay unused indefinitely in the Data Lake. By storing massive amounts of historical data, the infinite Data Lake may skew analysis with data that is no longer relevant to the priorities of the business. In keeping the historical data the metadata describing it must be understood as well. This decreases the performance of the Data Lake by increasing the overall workload of employees to clean the datasets no longer in use for analysis.</p> | ||
Line 154: | Line 154: | ||
<p class="inline"></p>Data in a Data Lake lacks standard security protection with a relational database management system or an enterprise database. In practice, this means that the data is unencrypted and lacks access control.<p class="expand inline mw-collapsible-content">. Security is not just a binary solution. We have varying degrees of security (unclassified, secret, top secret, etc.) and all of which require different approaches. This will inevitably present challenges with the successful use of data from Data Lakes.To combat this, organizations will have to embrace a new security framework to be compatable with Data Lakes and Data Scientists.</p> | <p class="inline"></p>Data in a Data Lake lacks standard security protection with a relational database management system or an enterprise database. In practice, this means that the data is unencrypted and lacks access control.<p class="expand inline mw-collapsible-content">. Security is not just a binary solution. We have varying degrees of security (unclassified, secret, top secret, etc.) and all of which require different approaches. This will inevitably present challenges with the successful use of data from Data Lakes.To combat this, organizations will have to embrace a new security framework to be compatable with Data Lakes and Data Scientists.</p> | ||
<h4>Considerations</h4> | <h4>Considerations</h4> | ||
− | + | <p class="expand mw-collapsible-content">Shared Services Canada (SSC) has an excellent opportunity to capitalize on its mandate of providing data storage service to GC’s other departments. SSC, as the GC’s Service Provider, could potentially a centralized GC Data Lake and allow GC Data Scientists access to this central data using a single unified Data Lake interface. However, this is a project which should be implemented after cloud has been adopted and enterprise data centers have been migrated to in order to provide adequate infrastructure and scaling.</p> | |
− | <p> | + | <p class="inline">Data Lakes should not be confused for conventional databases although they both store information. A Data Lake will always underperform when tasked with the jobs of a conventional database. </p><p class="expand inline mw-collapsible-content">To combat this, SSC must create data architectures that define the proper application of Data Lakes. Too often, Data Lakes suffer from lack of foresight on what they're supposed to achieve. </p><p class="inline">Creating a Data Lake becomes the goal rather than achieving a strategic objective. </p><p class="expand inline mw-collapsible-content"></p> |
− | <p> | + | <p class="expand mw-collapsible-content">Shared Services Canada (SSC) should consider designing Data Lake infrastructure around Service-Level Agreements (SLA) to keep Data Lake efforts on track. This includes ensuring that SSC has established clear goals for Data Lakes prior to deployment. </p> |
− | < | + | <p class="expand mw-collapsible-content">SSC should also consider building an expert special group focussed on advanced analytics and experimental data trend discovery in Data Lakes. While the fundamental assumption behind the Data Lake concept is that everyone accessing a Data Lake is moderately to highly skilled at data manipulation and analysis, the reality is most are not. SSC should consider significant investment in training employees necessary skills, such as Data Science, Artificial Intelligence, Machine Learning, or Data Engineering.</p> |
− | <p> | + | <p>SSC should be cognisant that there are significant overinflated expectations revolving around Data Lakes. Inflated expectations lead to vague and ambiguous use cases and increased chances of catastrophic failures. As a Service Provider, SSC must be strict in establishing clear goals for Data Lake provision efforts before deployment. SSC, should be wary of attempts to replace strategy development with infrastructure. A Data Lake can be a technology component that supports a data and analytics strategy, but it cannot replace that strategy.</p> |
− | < | + | <p class="expand mw-collapsible-content">SSC should be concerned with the provision and running of the infrastructure, the departments themselves are responsible for the data they put in the Data Lake. However, as a Service Provider, SSC should monitor the Data Lake with regards to data governance, data lifecycle for data hygiene, and what is happening in the Data Lake overall. Depending on technology, SSC will need to be very clear on how to monitor activities in the Data Lakes it provides to the GC. </p> |
− | <p> | + | <p class="expand mw-collapsible-content">SSC should consider a Data Lake implementation project as a way to introduce or reinvigorate a data management program by positioning data management capabilities as a prerequisite for a |
− | <p> | + | successful Data Lake. Data will need to be qualified before it hits the data lake, this can and should be done in a system of record first. In this way the data can be organizedto fit into the Data Lake implementation. |
− | + | </p> | |
− | <p>SSC | + | <p class="expand mw-collapsible-content">SSC should create policies on how data is managed and cleaned in the Data Lake. Automated data governance technologies should be added to support advanced analytics. Standardizing on a specific type of governance tool is an issue which must be resolved. Additionally, planning for effective metadata management, considering metadata discovery, cataloguing and enterprise metadata management applied to Data Lake implementation is vital. Rigorous application of data discipline and data hygiene is needed. To combat this, SSC should use data management tools and create policies on how data is managed and cleaned in the Data Lake. The majority of Data Lake analysts will prefer to work with clean, enriched, and trusted data. However, data quality is relative to the task at hand. Lowquality data may be acceptable for low-impact analysis or distant forecasting, but unacceptable for tactical or high-impact analysis. SSC assessments should take this into account.</p> |
− | + | <p>Design Data Lakes with the elements necessary to deliver reliable analytical results to a variety of data consumers. The goal is to increase cross-business usage in order to deliver advanced analytical insights. Build Data Lakes for specific business units or analytics applications, rather than try to implement some vague notion of a single enterprise Data Lake. However, alternative architectures, like data hubs, are often better fits for sharing data within an organization.</p> | |
− | <p> | + | <h2>References</h2> |
− | |||
− | <p> | ||
− | |||
− | |||
</div> | </div> |
Revision as of 13:50, 18 July 2019
|
|||||||
---|---|---|---|---|---|---|---|
200px | |||||||
Status | Translation | ||||||
Initial release | May 5, 2019 | ||||||
Latest version | July 18, 2019 | ||||||
Official publication | Kubernetes.pdf | ||||||
|
Datalakes is a central system or repository of data that is stored in its natural/raw format. A datalake acts as a single store for all enterprise data. Data is transformed using machine learning, advanced,analytics, and visualization. Several forms of data can be hosed in a datalake. These include structured data from relational databases, unstructured data, semi-structured data, and binary data.
Business Brief
In an ever-increasing hyperconnected world, corporations and businesses are struggling to deal with the responsibilities of storage, management and quick availability of raw data. To break these data challenges down further:
- Data comes in many different structures.
- Unstructured
- Semi-Sturctured
- Structured
- Data comes from many disparate sources.
- Enterprise Applications
- Raw Files
- Operation and Security Logs
- Financial Transactions
- Internet of Things (IoT) Devices and Network Sensors
- Websites
- Scientific Research
- Data sources are often geographically distributed to multiple locations
- Datacenters
- Remote Offices
- Mobile Devices
In an effort to resolve these data challenges, a new way of managing data was created which drove data oriented companies to invent a new data storage mechanism called a Data Lake.
Data Lakes are essentially a technology platform for holding data. Their value to the business is only realized when applying data science skills to the lake.
To summarize, usecases for Data Lakes are still being discovered. Cloud providers are making it easier to procure Data Lakes and today Data Lakes are primarily used by Research Institutions, Financial Services, Telecom, Media, Retail, Manufacturing, Healthcare, Pharma, Oi l& Gas and Governments.
Technology Brief
A Data Lake is a centralized repository that allows you to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data, and run different types of analytics—from dashboards and visualizations to big data processing, real-time analytics, and machine learning to guide better decisions.”
The DAaaS model enables users to self-serve their data and analytic needs. Users browse the lake’s data catalog (a Datapedia) to find and select the available data and fill a metaphorical “shopping cart” (effectively an analytics sandbox) with data to work with. Once access is provisioned, users can use the analytics tools of their choice to develop models and gain insights. Subsequently, users can publish analytical models or push refined or transformed data back into the Data Lake to share with the larger community.
Industry Usage
There are a variety of ways Data Lakes are being used in the industry:
Ingestion of semi-structured and unstructured data sources (aka big data)such as equipment readings, telemetry data, logs, streaming data, and so forth. A Data Lake is a great solution for storing IoT (Internet of Things) type of data which has traditionally been more difficult to store, and can support near real-time analysis. Optionally, you can also add structured data (i.e., extracted from a relational data source) to a Data Lake if your objective is a single repository of all data to be available via the lake.
Experimental analysis of data before its value or purpose has been fully defined. Agility is important for every business these days, so a Data Lake can play an important role in "proof of value" type of situations because of the "ELT" approach discussed above.
Advanced analytics support. A Data Lake is useful for data scientists and analysts to provision and experiment with data.
Archival and historical data storage. Sometimes data is used infrequently, but does need to be available for analysis. A Data Lake strategy can be very valuable to support an active archive strategy.
Distributed processing capabilities associated with a logical data warehouse.
Canadian Government Use
In 2019, the Treasury Board of Canada Secretariat (TBS), partnered with Shared Services Canada and other departments, to identify a business lead to develop a Data Lake (a repository of raw data) service strategy so that the GC can take advantage of big data and market innovation to foster better analytics and promote horizontal data-sharing.
Data Lake development in the GC is a more recent initiative. This is mainly due to the GC focussing resources on the implementation of cloud initiatives. However, there are some GC departments engaged in developing Data Lake environments in tandem to cloud initiatives.
Implications for Government Agencies
Value Proposition
Data Lakes can provide data to consumers more quickly by offering data in a more raw and easily accessible form. Data is stored in its native form with little to no processing, it is optimized to store vast amounts of data in their native formats. By allowing the data to remain in its native format, a much timelier stream of data is available for unlimited queries and analysis. A Data Lake can help data consumers bypass strict data retrieval and data structured applications such as a data warehouse and/or data mart. This has the effect of improving a business’ data flexibility.
A Data Lake is not a single source of truth. A Data Lake is a central location in which data converges from all data sources and is stored, regardless of the data formatting.
The Data Lake architectural approach can store large volumes of data, this can be a way in which cross-cutting teams can pool their data in a central location and by complementing their systems of record with systems of insight.
Having structured, unstructured and semistructured data, usually in the same data set, can contain business, predictive, and prescriptive insights previously not possible from a structured platform as observed in data warehouses and data marts.
Challenges
Although Data Lake technology has many benefits for organizations dealing with big data it has its own challenges. For example:
Data Governance and Semantic Issues
Often, Data Lake implementations are focused on storing data instead of managing the data. Data Lakes are not optimized for semantic enforcement or consistency. They are made for semantic flexibility, to allow anyone to provide context to data if they have the skills to do so.
Putting data in the same place does not remove it’s ambiguity or meaning. Data Lakes provide unconstrained, “no compromises” storage model environment without the data governance assurances common to data warehouses or data marts. Proper meta data is essential for a Data Lake, without appropriate meta data the Data Lake will not work as intended. It is beneficial to think of meta data as the fish finder in the Data Lake.
Lack of Quality and Trust in Data
Data Swamps, Performance, and Flexibility Challenges
A Data Lake is not optimized for a high number of users or diverse and simultaneous workloads due to intensive query tasks. This can result in performance degradation and failures are common when running extractions, transformations, and loading tasks all at the same time. On-premises Data Lakes face other performance challenges in that they have a static configuration.
Data Hoarding and Storage Capacity
The storage capacity of all this data (and future data) will be an ongoing challenge and one that will require constant management. While Data Lakes can and will be stored on the cloud, SSC as cloud broker for the GC will need to provide the appropriate infrastructure and scalability to clients.
Advanced Users Required
Data SecurityData in a Data Lake lacks standard security protection with a relational database management system or an enterprise database. In practice, this means that the data is unencrypted and lacks access control.
Considerations
Data Lakes should not be confused for conventional databases although they both store information. A Data Lake will always underperform when tasked with the jobs of a conventional database.
Creating a Data Lake becomes the goal rather than achieving a strategic objective.
SSC should be cognisant that there are significant overinflated expectations revolving around Data Lakes. Inflated expectations lead to vague and ambiguous use cases and increased chances of catastrophic failures. As a Service Provider, SSC must be strict in establishing clear goals for Data Lake provision efforts before deployment. SSC, should be wary of attempts to replace strategy development with infrastructure. A Data Lake can be a technology component that supports a data and analytics strategy, but it cannot replace that strategy.
Design Data Lakes with the elements necessary to deliver reliable analytical results to a variety of data consumers. The goal is to increase cross-business usage in order to deliver advanced analytical insights. Build Data Lakes for specific business units or analytics applications, rather than try to implement some vague notion of a single enterprise Data Lake. However, alternative architectures, like data hubs, are often better fits for sharing data within an organization.
References