Line 228: |
Line 228: |
| <p class="recco">Recommended by Agriculture and Agri-Food Canada, a GC Data Community partner</p> | | <p class="recco">Recommended by Agriculture and Agri-Food Canada, a GC Data Community partner</p> |
| <br> | | <br> |
| + | |
| | | |
| [[Image:Statistical-and-machine-learning-data-mining.jpg|150px|Statistical and machine-learning data mining]] | | [[Image:Statistical-and-machine-learning-data-mining.jpg|150px|Statistical and machine-learning data mining]] |
Line 275: |
Line 276: |
| <p>Le développement de l'économie numérique et de l'intelligence artificielle (IA) a modifié de façon importante les modes de production des produits et des services, à telle enseigne qu'il oblige les entreprises à revoir leurs pratiques de fonctionnement sur tous les plans. Qui plus est, l'accélération vers le numérique envahit peu à peu le quotidien de chacun et chacune qui voit se transformer parfois en profondeur son activité de travail jusqu'à entraîner une certaine forme de déqualification professionnelle, voire la perte de certains emplois et la création de certains autres, nécessitant un niveau de formation différent et plus élevé. Conçu selon une approche interdisciplinaire et grâce à la contribution d'autrices et d'auteurs québécois, français et belge, le présent ouvrage examine les principaux effets que provoquent ces transformations vers le numérique sur les mondes du travail ainsi que la place de plus en plus importante qu'y occupe l'intelligence artificielle (IA). Il propose un éclairage sur certains des enjeux que suscitent ces transformations tant sur le plan éthique que sur celui du dialogue social et de la gestion des ressources humaines ou encore sur le plan juridique. À ces enjeux s'ajoutent les défis que représentent la dilution de la frontière entre la vie de travail et la vie privée de même que la métamorphose du rapport entre l'entreprise et les personnes salariées qui découle du développement des plateformes numériques. L'ouvrage vise aussi à susciter la réflexion sur la nécessité de revoir les modes de régulation du travail pour lesquels il présente des avenues à explorer.</p> | | <p>Le développement de l'économie numérique et de l'intelligence artificielle (IA) a modifié de façon importante les modes de production des produits et des services, à telle enseigne qu'il oblige les entreprises à revoir leurs pratiques de fonctionnement sur tous les plans. Qui plus est, l'accélération vers le numérique envahit peu à peu le quotidien de chacun et chacune qui voit se transformer parfois en profondeur son activité de travail jusqu'à entraîner une certaine forme de déqualification professionnelle, voire la perte de certains emplois et la création de certains autres, nécessitant un niveau de formation différent et plus élevé. Conçu selon une approche interdisciplinaire et grâce à la contribution d'autrices et d'auteurs québécois, français et belge, le présent ouvrage examine les principaux effets que provoquent ces transformations vers le numérique sur les mondes du travail ainsi que la place de plus en plus importante qu'y occupe l'intelligence artificielle (IA). Il propose un éclairage sur certains des enjeux que suscitent ces transformations tant sur le plan éthique que sur celui du dialogue social et de la gestion des ressources humaines ou encore sur le plan juridique. À ces enjeux s'ajoutent les défis que représentent la dilution de la frontière entre la vie de travail et la vie privée de même que la métamorphose du rapport entre l'entreprise et les personnes salariées qui découle du développement des plateformes numériques. L'ouvrage vise aussi à susciter la réflexion sur la nécessité de revoir les modes de régulation du travail pour lesquels il présente des avenues à explorer.</p> |
| <p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p> | | <p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p> |
− | <br>
| |
− |
| |
| | | |
| [[Image:Modelisation-par-equations-structurelles-avec-Mplus.jpg|150px|La modélisation par équations structurelles avec Mplus]] | | [[Image:Modelisation-par-equations-structurelles-avec-Mplus.jpg|150px|La modélisation par équations structurelles avec Mplus]] |
Line 292: |
Line 291: |
| <p>Le data mining est un concept jeune qui apparaît en 1989 sous un premier nom de KDD (Knowledge Discovery in Databases, en français ECD pour Extraction de Connaissances à partir des Données). Le terme de « text and data mining » est apparu pour la première fois dans le domaine du marketing au début des années 1990. Ce concept, tel qu’appliqué aux services marketing, est étroitement lié au concept du « one-to-one relationship » (Michael Berry et Gordon Linoff, créateurs du data mining dans le m).</p> | | <p>Le data mining est un concept jeune qui apparaît en 1989 sous un premier nom de KDD (Knowledge Discovery in Databases, en français ECD pour Extraction de Connaissances à partir des Données). Le terme de « text and data mining » est apparu pour la première fois dans le domaine du marketing au début des années 1990. Ce concept, tel qu’appliqué aux services marketing, est étroitement lié au concept du « one-to-one relationship » (Michael Berry et Gordon Linoff, créateurs du data mining dans le m).</p> |
| <p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p> | | <p class="recco">Recommandé par Agriculture et Agroalimentaire Canada, un partenaire de la Communauté des données du GC.</p> |
| + | <br> |
| <br> | | <br> |
| | | |