

About the Speaker

Charlie Hart Hitachi America Ltd.

Current Positions

- >Senior Analyst, Security, Hitachi America R&D
- > Chairman, Automotive ISAC Supplier Affinity Group SBOM Working Group

Past Positions

- > Senior Vice President, Software and Solutions Engineering, Hitachi Data Systems
- ➤ Vice President, OSS Engineering, Savvis
- ➤ Senior Director, Software Engineering, Sun Microsystems
- > Vice President, Software Infrastructure Engineering, Veritas Software
- > Vice President, Systems Security/Services Engineering, StorageNetworks
- ➤ Vice President, Technology Systems and Services, Massachusetts Financial Services
- ➤ Project Specialist/Programmer Analyst, Software Services, Digital Equipment Corporation

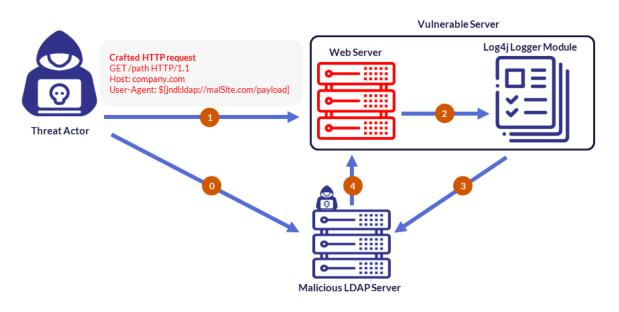
Education

➤ Bachelor of Arts, English – Boston College

Agenda

- Why SBOM Matters to the Automotive Industry
- Automotive ISAC and SBOM History, Details, and Status
- Next Steps

Why SBOM Matters to the Automotive Industry


Software Supply Chain Attacks – A Brief History

1984	Compiler Compromise (demo)
2010	NSA Cisco, Siemens/Sturiet
2015	Heartbleed/SSL, Apply 1000e
2017	NotPetya, Struts (Couley, CCleaner (Asus, Google, Microsoft, Akam Sung, Sony, Vmware, HTC, Linksys, Dlink, Cisco, Tang, Zepetto, Electronics Extreme)
2018	SuperMicrosoft) Visual Microsoft
2020	Solar Wiss, NTT BHE, Atlassian (demo)
2021	Kaseya, Xcode (again), Codecey, Github (demo), Mimecast/Office 365, Azure, Visual Studio (again/demo), Compiler Compromise (demo)

Log4j

- Threat actor setting up his malicious LDAP server with malicious Java class
- Threat actor sends malicious payload that is likely to be logged by the application
- Payload passed to Log4j for logging
- Log4j parse the payload and make a query to the malicious LDAP server
- The LDAP server responds with content that holds the malicious java class

NHTSA – "Cybersecurity Best Practices for the Safety of Modern Vehicles"

Cybersecurity Best Practices for the Safety of Modern Vehicles

U.S. Department

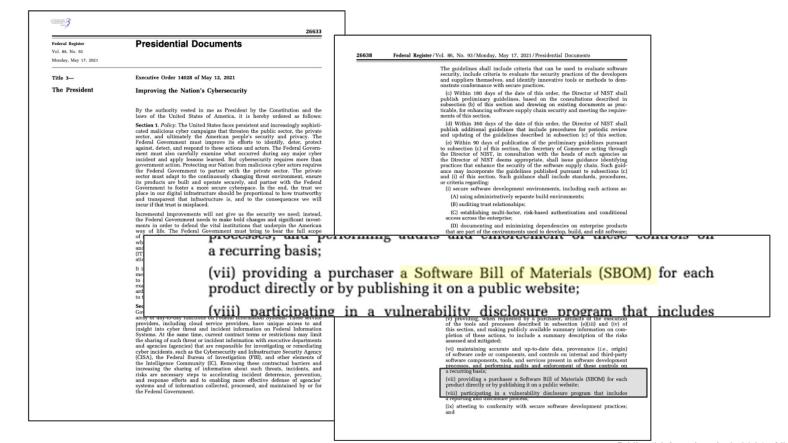
Draft 2020 Update

- 4.2.5 Protections

 [G.8] For remaining functionality and underlying risks, layers of protection¹⁷ that are appropriate for the assessed risks should be designed and implemented.

 [G.9] Clear cybersecurity standards should be specified and communicated to the suppliers that support the intended protections. ¹⁸
- 4.2.6 Inventory and Management of Software Assets on Vehicles
 - [G.10] Manufacturers should maintain a database of operational software components^{18,20} used in each automotive ECU, each assembled vehicle, and a history log of version updates applied over the vehicle's lifetime.
 - [G.11] Manufacturers should track sufficient details related to software components,²³ such that when a newly identified vulnerability is identified related to an open source or off-theshelf software,²² manufacturers can quickly identify what ECUs and specific vehicles would be affected by it.
- 4.2.7 Penetration Testing and Documentation
 - [G.12] Manufacturers should evaluate all commercial off-the-shelf and open-source software components used in vehicle ECUs against known vulnerabilities.^{23,24}

that support the intended protections.


4.2.6 Inventory and Management of Software Assets on Vehicles

- [G.10] Manufacturers should maintain a database of operational software components^{19,20} used in each automotive ECU, each assembled vehicle, and a history log of version updates applied over the vehicle's lifetime.
- [G.11] Manufacturers should track sufficient details related to software components,²¹ such that when a newly identified vulnerability is identified related to an open source or off-theshelf software,²² manufacturers can quickly identify what ECUs and specific vehicles would be affected by it.
- 4.2.7 Penetration Testing and Documentation

© Hitachi America, Ltd. 2021. All rights reserved.

May 2021 - Executive Order 14028 – "Improving the Nation's Cybersecurity"

HITACHI Inspire the Next

Major Regulation and Guidance

- There are no current SBOM regulations in the auto industry.
- But there is growing interest (e.g. NHTSA "Best Practice")
- Note: Executive Order only applies to US Government purchases and operations no force of law

Guidance from Governments

- US is the main global driver, influencing US allies and commercial vendors
- DoC NTIA public/private multistakeholder program, NIST guidance for USG and private industry
- DHS CISA Next phase of SBOM guidance and regulation
- DoE SBOM PoC starting under the supervision of INL and PNNL
- DoD Long required for classified, recently expanded for unclassified, further expanded by EO 14028
- FDA Draft premarket guidance for medical devices issued
- DoT NHTSA Cyber/safety best practices (expected to move from optional to required). DoT considering requiring for all federal vehicle purchases
- EOP NSC, OMB, others directing agency compliance with EO and other directives
- Japan METI and EU ENISA and others are considering guidance likely similar to US

Guidance from Standards Bodies

- ISO No requirements yet but requires risk analysis of code in 21434
- UNECE WP.29 No requirements yet but R155 requires demonstration of supplier-related risks Hitachi America, Ltd. 2021. All rights reserved.

SBOMs and Automotive ISAC

Background – ISACs (Information Sharing and Analysis Centers)

- Post-9/11 concerns about systemic risk in US industry
- Presidential Policy Directive 21 directed DHS to foster public/private cooperation and coordination and listed the initial critical infrastructure sectors
- US Department of Homeland Security later designated 16 US critical infrastructure sectors specifically
- Automotive and related industries are designated part of the Critical Manufacturing sector (not specifically noted as a single sector)
- The legal advantage of ISACs is antitrust safe harbor. The biggest benefit is the community of industry and cybersecurity people.

HITACHI Inspire the Next

FYI: "16" Critical Infrastructure Sectors

"There are 16 critical infrastructure sectors whose assets, systems, and networks, whether physical or virtual, are considered so vital to the United States that their incapacitation or destruction would have a debilitating effect on security, national economic security, national public health or safety, or any combination thereof."

https://www.cisa.gov/critical-infrastructure-sectors

- Chemicals
- Communications
- Dams
- Emergency Services
- Financial Services
- Government Facilities
- Information Technology
- Transportation Systems

- Commercial Facilities
- Critical Manufacturing
- Defense Industrial Base
- Energy
- Food and Agriculture
- Government Facilities
- Healthcare and Public Health
- Nuclear Reactors, Materials, and Waste
- Water and Wastewater Systems

AutoISAC SBOM Working Group - History

Phase 1 – Mar-Jul 2019

Sponsor: Analyst WG

Goal: Ensure NTIA SBOM considers automotive industry issues and opinions

Team: 10 members (includes 3 OEMs)

Objective: Publish concerns to NTIA and advocate for the auto industry

Phase 2 – Nov 2020 – Present

Sponsor: Supplier Affinity Group

Goal: Agree on best practices among suppliers and propose solution to OEMs

Team: 17 members (1 OEM)

Objectives:

- Unified supplier voice on SBOM adoption to OEMs
- Align with NTIA
- Practical approach with input from OEMs
- Best Practice published in 2021

AutoISAC AWG SBOM SIG (Phase 1) – 2019 Goal: Members' Issues Addressed With NTIA

- 1. What **info is needed** on an SBOM to provide analysis, sharing guidance, and security?
- 2. What **info is shared** with consumers of the component?
- 3. How are **components classified** in an SBOM?
- 4. How are **components identified**, e.g. version, branch, fragment, supplier/author?
- 5. What is the balance between **transparency vs. liability?**
- 6. How can **IP be protected** in a transparent BOM?
- 7. Should a BOM **enumerate all variations**?
- **8. Who gets the SBOM** and by what means?
- 9. How can **subcomponents** of large libraries **be distinguished from general use** of the library?
- 10. How will AutolSAC interact with and influence other SBOM projects?
- 11. How will components be **identified**, **tracked**, **and audited by the consumer** of the component?
- 12. How will software engineering and QA teams provide SBOMs?
- 13. How will purchasing agents enforce SBOM best practice and block restricted components?

Preview: Best Practice Guide Proposal

WILL INCLUDE

TLP AMBER distribution (for now)
Substantial overlap with NTIA guidance
Customizations for automotive
Mapping to automotive product lifecycle
Format and operational recommendations
Sharing discussion
Vendor-neutral tool list
Bibliography, training, and reference docs

WILL NOT INCLUDE

Mandatory rules – all points will be recommendations

Usurnation of supplier contracts or

Usurpation of supplier contracts or requirements

Static guidance – revisions expected during Phase 3 and ongoing

The Case Against SBOM – The Big Objections

1. IP Concerns

- Licensing
- Anticompetitive information
- Violation of other contract terms
- Unfair business or negotiating advantage to consumer
- 2. Legal, Liability, and Regulatory Concerns
- 3. Making Hacking Easy

All were reconciled (or nearly so) with members' concerns in the Best Practice Guide Draft

Next Steps

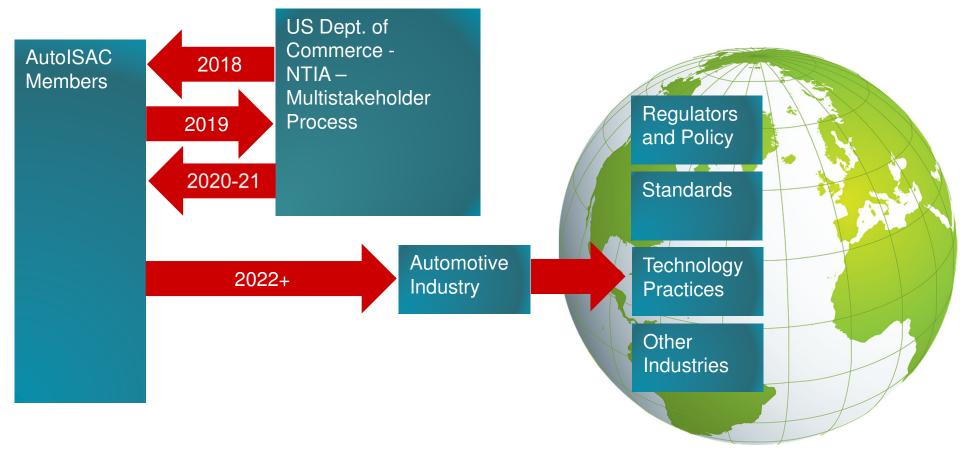
- 1. Finalize Best Practice Draft Proposal (Done)
- 2. Board of Directors approval
- 3. Phase 3 (Likely)— active exercise details under discussion
- 4. Future Possibilities (not decided)

Limited production pilot exercise

Training program

Automation and tool trials

DHS/CISA program (NTIA successor)


Supply chain integrity exercise

Vulnerability management use case and exercise

Addition of Vulnerability/Exploitability eXchange (VEX) automation

Cooperation, Education, and Guidance

© Hitachi America, Ltd. 2021. All rights reserved.


Introduction – Software Bill of Materials

HITACHI Inspire the Next

Software Bill of Materials (SBOM)

SBOM: A formal, machine-readable inventory of software components and dependencies, information about those components, and their hierarchical relationships.

- Comprehensive inventory (or explicitly state where it is not)
- May include open source or proprietary software
- Can be widely or publicly available, or access-restricted

Component Name	Supplie r Name	Versio n String	Autho r	Hash	UID	Relationshi p
Application	Acme	1.1	Acme	0x123	234	Self
Browser	Bob	2.1	Bob	0x223	334	Included in
Compression Engine	Carol	3.1	Acme	0x323	434	Included in
Buffer	Bingo	2.2	Acme	0x423	534	Included in

History:

2018: FDA-mandated security

improvements.

2019, 2021: DoC NTIA guidance

2021: Required by USG and others

2022: Auto-ISAC Best Practice guidance

Key points for automotive industry

- 1. Applies to embedded software, firmware, and microcode
- 2. Important aspect of safety for technology supply chain

SBOM Baseline Data - "Minimum Viable Product" | HITACHI | Inspire the Next

Author Name	Author of the SBOM				
Supplier Name	The entity who is responsible for support of the object of the SBOM. Vendor, Manufacturer, Developer, Maintainer, Distributor, etc.				
Component Name	Supplier or Author decides				
Version String	Supplier decides				
Component Hash	Cryptographic code check to ensure component matches SBOM references				
Unique Identifier	CPE, purl, UUID, GUID, etc				
Relationship	"Self" is the component that is the subject of the SBOM. "Included in" references another SBOM component.				

What Formats Are Used For Specifying SBOMs?

- SPDX Software Package Data Exchange https://spdx.dev
 - Linux Foundation-sponsored
 - Originally intended for open source license catalog
 - Robust support
 - Purpose-built adaptation for SBOM by Linux Foundation
- SWID SoftWare IDentification (tag) https://csrc.nist.gov/projects/Software-Identification-SWID
 - ISO/IEC 19770-2
 - Intended for inventory tracking, works for SBOM also
 - NIST support, full info requires ISO or IEC subscription
 - Software attribute tagging
- CycloneDX https://cyclonedx.org
 - OWASP CycloneDX Core Working Group
- Extensions available for programming environments
- Native extended (i.e superset of the NTIA guidance) SBOM support
- Good support, newer to program but highly developed