Canada

Architecture Plan for the
Web Experience Toolkit (WxT) v5

Reference Implementation for the Design . System

Provide a reference implementation for the Design System,
making it easier to implement and to keep pace with changes

Enable implementers to use only the components they need through
a modular architecture

Make WxT more future-proof, enabling the framework to continually
evolve with minimal impact to implementers

Make it easier to contribute by reducing the learning curve and
technology requirements

Gurrent Industry Landscape

- Greater focus on modularity and loose coupling of code

- Emphasis is on maintainability through intuitive organization of
code

- Steady evolution of baseline technologies (HTML, CSS, JavaScript)

- Node.js, Angular and React reign today but new frameworks and

approaches are always on the horizon (e.g., ReasonML)

Vue’s small following continues to grow (especially in China).

Facebook released ReasonML in late 2017 with more open-source releases expected
from Facebook in the coming years.

Architectural Scan of Web Frameworkds

Architecture Development Requires

ReactJS Component NodelS(0.9+), react,
react-dom

VuelS Custom-attribute None, Webpack

WxXT v4 Monolithic NodelJS (0.8+)

Angular Component NodelJS (0.9+),
angular-cli

Ember.JS Component NodeJS (0.8+),
ember-cli

___-4_;

Monolithic Architecture Wil va

 Pros

- All components are available in all cases

- Rigid in design, minimizing HTML changes and downstream churn for implementers
- Simple class-based approach to trigger features
« All-inclusive bundle with theme and functionality

- Cons

- Heavy footprint with little room for customization
« All-inclusive bundle is prone to conflicts with applications and CMS systems
« Component locations are unintuitive

- Hard to debug the root cause because of the multi-layer complexity

- Difficult to adapt to newer frameworks and approaches

Custom-Attribute Architecture Vuels

« Pros
- Maximum flexibility, enabling implementers to innovate by stacking features

- Lighter footprint due to the focus on discrete functionality rather than full
components

- Normally requires less releases since discrete functionality is less prone to change
- Facilitates rapid prototyping

- Cons

- More difficult to scale as the complexity of components/features increases

- Steeper learning curve for those who are not strong with HTML or JavaScript
(e.g., application developers and CMS maintainers) due to the abstract approach

- Increased maintenance effort for implementers since HTML markup is more likely to
be impacted by component/feature updates

- WXT v5

Component Architecture React!s
Angular

- Pros Ember.JS

- Aligned with major frameworks such as Drupal, ReactJS, Angular and Salesforce
- Shallower learning curve due to the more intuitive code structure

- Easier to implement since components are divided up cleanly, enabling implementers
to focus on only the components they need

- Easier to debug and maintain due to less code complexity and duplication
- Easier to leverage with JS specifications like CommonlS, AMD and ES6 Modules

- Cons

< Usually requires loaders or dependency managers
« Can be more challenging to implement code quality tools due to the modularity
- Alittle less flexible when prototyping than custom-attribute architectures

How WIXT vo Supports the Design System

Specifications Design System

Reference Component Rendered HTML,
implementation Architecture CSS and JS

Other

Concrete DrupalWxT variants

implementations

Salesforce
variant

CDTS WMS

___-8_;

WIXT vo Architecture Details

- Component architecture implementing the AMD JS specification

Aligning with the architectures of CMSs and applications frameworks to
simplify implementation

Ensuring compatibility with modern day build systems

Making it easier to customize the layout and design, including at the
component level

- Focused on widely supported international standards (HTML, CSS and JS)
to help future-proof the framework and to maximize compatibility

- Minimizing requirements for contributors, such as supporting lightweight

browser-only development
. _

WXT vo Variants

- Variant: Concrete implementation of WxT v5 for a specific
platform or framework (e.g., Drupal, Salesforce)

Makes it easier to implement and keep pace with WxT v5.0 and the
Design System

« WAXT v5 goals for supporting variants:
Minimize time and effort needed to build and maintain WxT v5 variants

Maximize flexibility and compatibility for variants by providing
“component” and “rendered” implementation options

Include variant maintainers in evolving WxT v5 to ensure it continues to

meet their needs —
10 _ 3

90 day roadmap

Initial project setup + 30% of components ¢ 60% of components « 80% of components

implemented implemented implemented
» Tools and build
system integration * Implementation « Alpha peerreview * Betalockdown
review

+ Develop WxT v5
component
architecture core

_

