
Architecture Plan for the 
Web Experience Toolkit (WxT) v5
Reference Implementation for the Design System



Objectives
• Provide a reference implementation for the Design System, 

making it easier to implement and to keep pace with changes

• Enable implementers to use only the components they need through 
a modular architecture

• Make WxT more future-proof, enabling the framework to continually 
evolve with minimal impact to implementers

• Make it easier to contribute by reducing the learning curve and 
technology requirements

2



Current Industry Landscape
• Greater focus on modularity and loose coupling of code

• Emphasis is on maintainability through intuitive organization of 
code

• Steady evolution of baseline technologies (HTML, CSS, JavaScript)

• Node.js, Angular and React reign today but new frameworks and 
approaches are always on the horizon (e.g., ReasonML)

• Vue’s small following continues to grow (especially in China).

• Facebook released ReasonML in late 2017 with more open-source releases expected 
from Facebook in the coming years.

3



Architectural Scan of Web Frameworkds

4

Framework Architecture Development Requires

ReactJS Component NodeJS(0.9+), react, 
react-dom

VueJS Custom-attribute None, Webpack

WxT v4 Monolithic NodeJS (0.8+)

Angular Component NodeJS (0.9+), 
angular-cli

Ember.JS Component NodeJS (0.8+), 
ember-cli



Monolithic Architecture 
• Pros

• All components are available in all cases

• Rigid in design, minimizing HTML changes and downstream churn for implementers

• Simple class-based approach to trigger features

• All-inclusive bundle with theme and functionality

• Cons
• Heavy footprint with little room for customization

• All-inclusive bundle is prone to conflicts with applications and CMS systems

• Component locations are unintuitive

• Hard to debug the root cause because of the multi-layer complexity

• Difficult to adapt to newer frameworks and approaches

5

WxT v4



Custom-Attribute Architecture
• Pros

• Maximum flexibility, enabling implementers to innovate by stacking features

• Lighter footprint due to the focus on discrete functionality rather than full 
components

• Normally requires less releases since discrete functionality is less prone to change

• Facilitates rapid prototyping

• Cons
• More difficult to scale as the complexity of components/features increases

• Steeper learning curve for those who are not strong with HTML or JavaScript 
(e.g., application developers and CMS maintainers) due to the abstract approach 

• Increased maintenance effort for implementers since HTML markup is more likely to 
be impacted by component/feature updates

6

VueJS



Component Architecture
• Pros

• Aligned with major frameworks such as Drupal, ReactJS, Angular and Salesforce

• Shallower learning curve due to the more intuitive code structure

• Easier to implement since components are divided up cleanly, enabling implementers 
to focus on only the components they need

• Easier to debug and maintain due to less code complexity and duplication

• Easier to leverage with JS specifications like CommonJS, AMD and ES6 Modules

• Cons
• Usually requires loaders or dependency managers

• Can be more challenging to implement code quality tools due to the modularity

• A little less flexible when prototyping than custom-attribute architectures

7

WxT v5
ReactJS
Angular

Ember.JS



How WxT v5 Supports the Design System

8

Design System

WxT v5

DrupalWxT
Salesforce 

variant
CDTS

Other 
variants

Specifications

Reference 
implementation

Concrete 
implementations

Rendered HTML, 
CSS and JS

Component 
Architecture

WMS



WxT v5 Architecture Details
• Component architecture implementing the AMD JS specification

• Aligning with the architectures of CMSs and applications frameworks to 
simplify implementation 

• Ensuring compatibility with modern day build systems

• Making it easier to customize the layout and design, including at the 
component level

• Focused on widely supported international standards (HTML, CSS and JS) 
to help future-proof the framework and to maximize compatibility

• Minimizing requirements for contributors, such as supporting lightweight 
browser-only development

9



WxT v5 Variants
• Variant: Concrete implementation of WxT v5 for a specific 

platform or framework (e.g., Drupal, Salesforce)
• Makes it easier to implement and keep pace with WxT v5.0 and the 

Design System

• WxT v5 goals for supporting variants:
• Minimize time and effort needed to build and maintain WxT v5 variants

• Maximize flexibility and compatibility for variants by providing 
“component” and “rendered” implementation options

• Include variant maintainers in evolving WxT v5 to ensure it continues to 
meet their needs

10



90 day roadmap

11

JanDecNovOct

Architecture

• Initial project setup

• Tools and build 
system integration

• Develop WxT v5 
component 
architecture core

• 30% of components 
implemented

• Implementation 
review

• 60% of components 
implemented

• Alpha peer review

• 80% of components 
implemented

• Beta lockdown

* Proposed soft milestones



Questions?

12


