The Inmates Are Running The Asylum
Why High-Tech Products Drive Us Crazy And How To

Restore The Sanity

By Alan Cooper
Reviewed by Tim Renczes

In traditional software development environments, organizational
hierarchies have revolved around the C.E.O or president of the company in a
top-down approach. Decisions are made at higher levels, and subsequently
filtered down to Product Line Managers, Project Managers, and lastly, Software
Engineers and Programmers. This is not necessarily the case — in fact, the high-
tech industry has inadvertently put programmers and engineers in charge.
Programmers and engineers run the show and end up being “back-seat drivers”
for product development. This is the essence of Alan Cooper’s book, “The
Inmates Are Running The Asylum”.

Software engineers try very hard to make their software easy to use.
They believe that their products are as easy to use as is technically possible. As
engineers, their belief is in technology. They see power and flexibility, richness
of features and functionality in their software. What they don’t see is how difficult
their software is to use for people who use it on a daily basis. As such, it is hard
for them to see clearly the nature of the problems plaguing the software industry.
The result is what Cooper calls “Dancing Bearware”. If one saw a dancing bear
on the street, we would be amazed not because the bear dances well, but that
the bear dances at all. Cooper likens this to software today in that people will
overlook interaction problems because the software performs its function, albeit
problematically and inefficiently.

“Featuritis” seems to be the dominant problem, with most companies
releasing new versions of their software on an annual basis that incorporate an
ever-increasing number of features. Software manufacturers perceive adding
new features to a product as being “free”, so they gratuitously devote resources
to feature development so long as the product ships on time. In fact, as Alan
Cooper observes: “Most product managers would rather ship a failure on time
than risk going late”.

The root of the problem lies in the software creation process. When a
software project is laid out, programmers begin programming right away. Design
only takes place when the product is finished to make the finished product easier
to use. The flaw with this approach is that programmers design for themselves,
not the user. They make design decisions at every step of the process. The
programmer “decides how each procedure will call each other procedure, how
information and status will be shared, stored and changed, and how its validity
will be guaranteed”. Each decision and the success of each one depend on the
programmer’s ability to bring their experience and judgment to bear. The way a
program is structured directly affects the usability of the end product, and
ultimately, a company’s revenue.



When a project’s goals are initially scoped, it is typical to develop a feature
list. Project members will spend hours, maybe days determining what features
should be incorporated into the final product. Otherwise known as “feature list
bargaining”, features are traded-off against the project’s deadline(s). What
managers don't realize is that programmers have the upper hand for determining
what features will actually be implemented. Programmers establish how long it
will take to implement each item on the list, so they can force items to the bottom
of the list merely by overestimating the time necessary to complete them. In this
way, programmers manage to thwart the traditional decision-making process,
and as such, programmers are completely in control in a bottom-up fashion,
rather than the top-down approach. As the title of the book suggests, “The
Inmates (Programmers) are running the Asylum (The Business)”.

The consequences of this approach of software design are far-reaching
and result in bad products. One example of a quote from a C.E.O in the book is
“Don’t throw out the prototype. Let’'s use it as the foundation for the real
product”. I've seen firsthand the effects of this approach. Managers and
programmers alike find it very difficult to throw away existing work that has been
done on a product. They liken it to throwing money out the window. The reality
is that prototypes are initial product concepts — they are put together under
extreme time constraints to showcase the viability of a product. As Alan Cooper
stresses in the book: “It is essential to have design completed before coding
begins”. With a prototype, there is no time to do initial design work. Interactive
products need to be designed by interaction designers instead of by software
engineers. When prototyping, interaction designers are rarely used, which is why
prototypes should never be used as the base upon which a product will be
developed. The cost benefits of doing design prior to development are
astronomical. Cooper compares software development to the movie industry
whereby it can cost millions of dollars to re-shoot a movie scene if not planned
out properly to begin with.

In the book, Cooper introduces us to the very important notion of Goal-
Directed design. He strongly suggests designing for only one particular type of
person so as to improve a product’s chances of succeeding. Cooper suggests
targeting 10% of the market and working to make them 100% ecstatic about the
product. Cooper uses a very interesting example with Chrysler Corporation.
When Robert Lutz, chairman of Chrysler, was considering developing the new
Dodge Ram pickup, 80% of people in focus groups hated it; however, Mr. Lutz
went ahead with production because the remaining 20% loved it. The Dodge
Ram went on to become a very profitable vehicle for Chrysler. This example
proved that having people love your product, even if it is only a minority, is how
you succeed. This is particularly true in the IT industry, whereby targeting a
vertical market is necessary in order to be profitable.

When targeting a particular customer segment, Cooper suggests the use
of personas during the design process so that design decisions can be made
with a particular persona in mind. Cooper goes so far as to insist that a name be
given to a persona and to refer to the persona by name, rather than as “the user”.
When designing a product, every person on the design team will have different
ideas of what “the user” needs or wants. As such, every person will make



individual decisions based off these perceptions. This ultimately results in a
poorly articulated product that doesn’t meet “the user’s” needs. If a persona is
narrowly defined such as: “Joe is a 35 year old lawyer who drives a Porsche. He
owns a cell phone, pager, Blackberry and always is on a tight schedule”, it is
easy to relate to Joe’s needs, namely time-savings, and the need for information
at his fingertips. Joe is more likely to get a product that’s designed for him.

Sometimes one persona isn’'t sufficient to cover all the users of a product.
In these cases, Cooper suggests the development of multiple personas, to a
maximum of three. If more than three personas are created, Cooper believes
that the problem is too large and must be broken down further. As these
personas are developed, a cast of characters is formed. When these characters
are precisely defined, the cast of characters becomes a design taxonomy which
has great power to explain our design decisions. As in Joe’s case, if we added a
wireless feature to the product, its justification would lie in the fact that Joe is
rarely in the office rather than an explanation of “The user might be out of the
office and could use this”. This approach takes the guessing out of the design
decision.

Cooper takes the notion of personas further and introduces the use of
scenarios. By creating daily use, necessary use, and edge case scenarios using
personas, we can even more clearly define in what context Joe might use a
particular feature that we are considering. In this way, businesses will be in a
better position to perform a cost-benefit analysis for each potential new feature.
By comparing potential sales for a particular persona to the development costs
associated with a new feature, the business can make an informed decision as to
which features will benefit its customer base most. Businesses can shift the
power away from programmers to management and their client base.

Another issue touched upon by Cooper is “The Customer-Driven Death
Spiral”. One of the buzzwords for the twenty-first century is that a company
should be “customer driven” — they should always be aware and respond to
customer problems; however, this approach can be fatal when the customer is
“holding the cheque”. Management, marketing, sales, and product development
will each have different views of how a product should be developed, but the
customer ultimately is the one who pays for the product at the end of the day.
Cooper stresses the difference between listening to and following a customer.
While listening to a customer is good, following a customer by merely doing what
a customer tells you to do is bad. As soon as a company allows customers to
dictate what features a product will have, the product will lose coherency in its
design. The product will mutate from one release to another, instead of growing
in an orderly manner. While each customer will get the features they want, they
will also have to avoid features they don’t want. As a result, the product’s
desirability will decrease, sales will decrease, and the company will falter. The
customer does not have the long-term interests of the company in mind.

Overall, this book was an incredible read and an enlightenment into the
world of interaction design and the design decision methodology. Alan Cooper’s
extensive use of examples and case studies of companies such as Sony,
Microsoft, Logitech, etc... lend proof to every concept he discussed. He always



made comparisons between what current design standards are, and what should
be done to improve upon them. Alan Cooper’s consulting experience in the field
of interaction design also was of interest as he provided hands-on examples of
the application of his methodology. By adopting company-wide standards for
design, companies can begin to benefit and reap the rewards of creating user-
friendly products. The challenge now is to create decision support systems that
complement the design process and incorporate Alan Cooper’s learning.



