

Environnement et Changement climatique Canada

Humidex Climate Projections

Kenneth Chow, Housseyni Sankare, Emilia Diaconescu, Trevor Murdock, Alex Cannon

Humidex (HX) describes how hot the weather feels to a person, by taken into account the effect of heat and humidity.

Source: Environment Canada

https://www.canada.ca/en/environment-climate-change/services/seasonal-weather-hazards/spring-summer.html#humidex Source: https://www.ccohs.ca/oshanswers/phys_agents/humidex.html

• Computed as an hourly value and included in forecast

- Computed as an hourly value and included in forecast
- Included in MSC Heat warning system

Criteria*:

development

- Computed as an hourly value and included in forecast
- Included in MSC Heat warning system
- Included in Safety at Work Measures:
 - o Canadian Centre for Occupational Health and Safety
 - o Sun Safety at Work Canada
 - o Occupational Health Clinics for Ontario Workers Inc.
 - o Eastern Ontario Health Unit
 - o Work Safe Saskatchewan
 - <u>Ministère de la Santé et des Services sociaux</u>
 <u>Québec</u>
 - o Nova Scotia's Department of Health and Wellness

Humidex 1 – Moderate physical work, unacclimatized worker, OR Heavy physical work, acclimatized worker	Response	Humidex 2 – Moderate physical work, acclimatized worker, OR Light physical work, unacclimatized worker	
25 - 29	 supply water to workers on an "as needed" basis 	32 - 35	
30 - 33	 post Heat Stress Alert notice encourage workers to drink extra water start recording hourly temperature and relative humidity 	36 - 39	
34 - 37	 post Heat Stress Warning notice notify workers that they need to drink extra water ensure workers are trained to recognize symptoms 	40 - 42	
38 - 39	 work with 15 minutes relief per hour can continue provide adequate cool (10 - 15°C) water at least 1 cup (240 mL) of water every 20 minutes workers with symptoms should seek medical attention 	43 - 44	
40 - 41	 work with 30 minutes relief per hour can continue in addition to the provisions listed previously 	45 - 46*	
42 - 44	 if feasible, work with 45 minutes relief per hour can continue in addition to the provisions listed above 	47 - 49	
45 or over	only medically supervised work can continue	50° and over	

CANADIAN CENTRE FOR CLIMATE SERVICES

Source: Occupational Health Clinics for Ontario Workers (OHCOW) - "Humidex Based Healt Response Plan"

Objectives

- Develop, across Canada, climate projections until the end of the century for daily maximum Humidex (HXmax) and HX threshold indices:
 - > HX>30 (Discomfort days)
 - > HX>35 (Caution days)
 - > HX>40 (Extreme caution days)

Issues:

- Forecasts are using **hourly values** but climate projections are **daily or monthly**
- Model simulations have biases in estimating temperature and humidity historical values
- Climate simulations have coarse spatial resolutions

Project Steps

- 1. Find a method to estimate humidex indices from daily temperature and humidity
- 2. Find a high-resolution historical gridded dataset to use as target for bias correction
- 3. Identify the most appropriate bias correction methodology
- 4. Produce ensemble projections of HX and HX indices using results from 1, 2 and 3

Step 1: Daily HXmax approximation

- Approximate daily HXmax by using daily Tmax and daily RHmin
- Evaluate approximation against hourly-based indices:
 - **Daily HXmax** HX>30, HX>35, HX>35
 - Metrics used: mean bias correlation coefficient, Perkins skill score

May–September (1980–2018) Daily HXmax mean bias : between -1.3 and 0.0 units, with an average value of 0.5 units)

Diaconescu, E., Sankare, H., Chow, K., Murdock, T. Q., & Cannon, A. J. (2022). A short note on the use of daily climate data to calculate Humidex heat-stress indices. *International Journal of Climatology*, 1–13. <u>https://doi.org/10.1002/joc.7833</u>

Step 2: Identify target gridded dataset

Dataset	Description	Hourly variables	Spatial resolution, grid type	Time period
ERA5-Land / ECMWF (Muñoz-Sabater et al. 2021)	 Land-surface reanalysis driven by ERA5 ERA5 assimilates surface air temperature and dew point temperature 	 surface air temperature dew point temperature 	9 km, octahedral reduced Gaussian grid transformed to regular lat-lon grid	1950 - 2018
Canadian Regional Deterministic Reforecast System (RDRSv2) / ECCC (Gasset et al. 2021)	 Historical reforecast driven by ERA-Interim Direct assimilation of surface air temperature and dew point temperature 	 surface air temperature dew point temperature relative humidity 	~10 km, rotated grid transformed to regular lat-lon grid	1980 - 2018

Evaluation:

- Compared reanalysis data to stations
- May to September period (MJJAS) from 1980 to 2018
- Daily Tmax, RHmin HXmax and three HX indices (HX>30, HX>35 HX>40)
- Metrics used: mean bias correlation coefficient, Perkins skill score

Mean Bias daily HXmax

Mean Bias HX>35 (discomfort days)

Step 3: Select Bias Correction Method

- 5 Bias correction techniques were tested:
 - 3 quantile mapping methods
 - o BCCAQv2
 - o MBCn
- Metrics: mean bias, correlation coefficient
- Variables: Daily Tmax, RHmin, HXmax, HX>30, HX>35, HX>40
- Downscaled GCMs using a corresponding RCM historical period as the target
 - Outputs were compared against RCM data in the future period
 - BCCAQv2 and MBCn performed very well and were selected for final test
- Test of 2 GCMs bias corrected with BCCAQv2 and MBCn against reanalysis (ERA5-Land and RDRSv2)
 - Outputs were compared against stations

HX>30 (discomfort days): Bias Corrected GCM VS. Station Observations

٠

Production: Dataset Details

- Download Tmax and RHmin output from 19 CMIP6 models
 ➢ Period: 1950-2100
 ➢ SSP126; SSP245 and SSP585
- Statistically downscaled and bias corrected ensemble
 Downscaled and bias corrected method: MBCn
 Target dataset: ERA5-Land
- Output preprocess:
 - Computation of daily HXmax
 - ➢ Computation of annual and 30y-averages of indices HX>30, HX>35, HX>40
 - Computation of the ensemble percentile for annual and 30y-averages of indices HX>30, HX>35, HX>40

Humidex Ensemble ACCESS-CM2 ACCESS-ESM1-5 **CMCC-ESM2** CNRM-CM6-1 **CNRM-ESM2-1** CanESM5 **EC-Earth3 EC-Earth3-Veg EC-Earth3-Veg-LR** FGOALS-g3 GISS-E2-1-G **INM-CM4-8** INM-CM5-0 **IPSL-CM6A-LR MIROC-ES2L MIROC6** MPI-FSM1-2-HR MPI-ESM1-2-LR MRI-ESM2-0

Annual Discomfort days (HX > 30), 1950-2100

CANADIAN CENTRE FOR CLIMATE SERVICES

HXmax30 (days)

Areas with at least one Extreme Caution Day per year (HX > 40) during historical and future periods

High emission scenario (SSP 585)

Environnement et Changement climatique Canada

Questions? CONTACT US:

ccsc-cccs@ec.gc.ca

1-833-517-0376

EN: canada.ca/climate-services FR: canada.ca/services-climatiques