

Computer Vision Results

© Ai.Fish 2023 | All rights reserved.

Goal: Predict species apportionment in an image

This involves:

Localizing all fish in an image

100s or 1000s of targets

Classifying the species of all localized fish
Computing proportions from these counts

Review of Approach

Existing computer vision algorithms inadequate.

Object detection

- Localization (boxes) + classification
- But cannot handle dense scenes

Crowd localization

- Localization in dense scenes
- But cannot classify

Review of Approach

Goal: Dense localization and classification.

Dataset

- 9 vessels, 39 trips, 471 tows of raw data
- Three step annotation procedure:
 - 1. Localizations ("dots")
 - 2. Expert species classifications
 - 3. Expert review
- Collected 477,889 annotations in 3,362 images

Algorithm Details

Starting point: Crowd Localization Transformer (CLTR)

- State of the art for crowd localization
- But cannot perform classification

Liang, D., Xu, W. and Bai, X., 2022, October. An end-to-end transformer model for crowd localization. In European Conference on Computer Vision (pp. 38-54). Cham: Springer Nature Switzerland

Algorithm Details

Add a classification branch

- Additional neural network layers
- Additional classification loss during training (softmax + cross-entropy)
- Now each point has a species classification

Two metrics were developed to evaluate our model in the context of the apportionment task:

- 1. Dominant Species Accuracy
- 2. Weighted Classification Error

We evaluated the model on its own (using our test dataset) as well as in comparison to trained reviewers.

}</>

Metrics

Dominant Species Accuracy

Accuracy of predicting the most common class.

Typically an image is dominated by one species; predicting this species correctly will have the largest effect on overall accuracy.

This metric provides a simple "at a glance" measure of how well we do at identifying the majority class.

Weighted Classification Error

A more complex metric that takes into account all species present as well as the apportionment goal.

Weighted Classification Error

Ground Truth

Predicted

Weighted Classification Error Ground Truth Predicted Species 1: 10 Species 3: 0 Species 3: 20 Species 1:40 Species 2: 60 Species 2: 70

• Mean absolute error: (|40 - 10| + |60 - 70| + |0 - 20|) ÷ 3 = 20%

Weighted Classification Error Ground Truth Predicted Species 1: 10 Species 3: 0 Species 3: 20 Species 1: 40 Species 2: 60 Species 2:70

- Mean absolute error: (|40 10| + |60 70| + |0 20|) ÷ 3 = 20%
- But this gives equal weight to all classes, which might not be appropriate.
 - E.g. there are 5 classes total, but only 3 present; now divisor is 5, so error is artificially reduced

Weighted Classification Error Ground Truth Predicted Species 1: 10 Species 3: 0 Species 3: 20 Species 1:40 Species 2: 60 Species 2: 70

• Weight by ground truth: 0.1*|40 - 10| + 0.7*|60 - 70| + 0.2*|0 - 20| = 14%

Weighted Classification Error Ground Truth Predicted Species 1: 10 Species 3: 0 Species 3: 20 Species 1: 40 Species 2: 60 Species 2: 70

- Weight by ground truth: 0.1*|40 10| + 0.7*|60 70| + 0.2*|0 20| = 14%
- But what if a ground truth class is not present, but you predict it? Error for that class would be 0.

Weighted Classification Error Ground Truth Predicted Species 1: 10 Species 3: 0 Species 3: 20 Species 1:40 Species 2: 60 Species 2: 70

• Weight by avg of GT + predicted: 0.25*|40 - 10| + 0.65*|60 - 70| + 0.1*|0 - 20| = 19.2%

- Weight by avg of GT + predicted: 0.25*|40 10| + 0.65*|60 70| + 0.1*|0 20| = 19.2%
- Bonus: Now the measure is symmetric, so neither needs to be considered the "ground truth": we can compare the discrepancy of human reviewers, for example.

3</>

Evaluate:

- Model performance
- Human expert performance

Using:

Test set of 100 held-out examples
 Sampled from tows not present in training data

Dominant Species Accuracy Comparison

Metric	Algorithm	Expert 1	Expert 2
Dominant Species Accuracy	94%	95%	94%
Mean Weighted Classification Error	9.4%	7.5%	7.5%

- Algorithm achieves human expert-level performance on dominant species classification
- Algorithm is within 2% of human expert performance when considering mean weighted classification error
- Demonstrates the feasibility of our approach for producing accurate automated apportionment estimates