Safety and Security in the Automotive Supply Chain

Sebastian Fischmeister

Dept. of Electrical and Comp. Engineering University of Waterloo

esg.uwaterloo.ca

Objectives

(Disclaimer: exaggerated for dramatic effect)

- Show that we have no clue what's going on in modern systems
- Show that attackers (=business people) leverage this today
- Show that Canadians are at risk, because of it
- Show a silver lining and a call to action

Modern Vehicles are Beyond Deep Comprehension of Human Minds

Cars are Complicated

Code Complexity is Increasing

Software Growth in Real-time Systems

⁻ Ford F150: **150M**

- Between 30-100 ECUs in cars (across 6 citable sources)

We Cannot Comprehend Digital Systems

Nobody would build the bridge, but people would try to build digital systems of equal complexity.

6

Wat**CAR** 🔼

=> Humans are terrible at judging logical complexity

Illustrating one root cause:

Bridge from Tokyo

to Vancouver

Systems Are Safety-Critical and Networked

More Vulnerabilities Every Year

Reported Vulnerabilities and Exposures (up to 2019)

Durability of Vehicles Challenges Business Assumptions Compromising Safety & Security

Outdated in 1 year.

Operating since 1950s.

Your New Car will become a Highly-automated Oldtimer

An Additional Frontier

SUPPLY CHAIN CYBERSECURITY

Problem: Trusting the Hardware

- Integrity of the underlying hardware?
- Did I get what I ordered?

Problem 1: Recycled e-waste sold as new.

Problem 2: Counterfeit chips

Problem 3: Hardware implants

This decade will be about attacks through the supply chain.

How Big is the Problem?

Taken from: https://www.erai.com/erai_blog/3167/_2019_erai_reported_parts_statistics

Counterfeit, Implant, Hardware Trojan Detection

We purchased 220 FTDI Microcontroller chips on the open market from 7 different vendors = Found 120 (54%) counterfeit chips in total

Silver Lining: Hardware Integrity Assessment

- ✓ Non-destructive
- ✓ Blackbox
- ✓ Vendor Agnostic
- ✓ In-Situ

DETECT SUPPLY CHAIN ATTACKS

Detect implants, alterations, and weaknesses maliciously inserted into the firmware.

REVEAL COUNTERFEIT PARTS

Determine system integrity and detect counterfeit parts without requiring an internal inspection.

PROTECT AGAINST BACKDOORS

Identify undisclosed functionality through malicious firmware and hardware tampering.

Ensure that you got is actually what you ordered!

Developed at UWaterloo, commercialized through: Solution Palitronica

Conclusions

- Vehicles are beyond deep comprehension of an individual
- Supply chain cybersecurity is important today
- Almost all companies blindly trust their suppliers
- Canadians accepts an unknown safety risk through the supply chain
- Technology for comprehensive the supply chain cybersecurity exists today

Call to action

- Urgent and important to nudge investment in supply chain cybersecurity
- Support POCs to understand what you can ask for

Contact info:

Sebastian Fischmeister

sfischme@uwaterloo.ca Dept. of Electrical and Computer Eng. University of Waterloo 200 University Ave West Waterloo, ON N2L 3G1

This work was supported in part by industrial partners and the <u>Canadian tax payer</u>, so thank you very much to everyone who pays taxes.

